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A DESIGN METHOD FOR RELAXATION LABELING APPLICATIONS 

Robert A. Hummel 

Courant Institute, New York University 

ABSTRACT specified by a set of weighted preEerences, given 
by support functions si(R;p), which are functions 
of the labeling assignment 5. A separate function 
is given for each label at each object. The 
support si(R,F) can be positive or negative, and 
denotes the support which the current mix of 
weighted assignments lend to the prtiposition that 
object ai is label XX. In nearly all applications 
to date, the support functions are linear in 6: 

A summary of mathematical results developing 
a theory of consistency in ambiguous labelings is 
presented. This theory allows the relaxation 
labeling algorithm, introduced in [Rosenfeld, 
Hummel, Zucker, 19761, to be interpreted as a 
method for finding consistent labelings, and 
allows specific applications to be tailored in 
accordance with intended design goals. We 
discuss, with a couple of examples, a design 
methodology for using this theory for practical 
applications. 

si(R ;p> = z 1 
j R' 

rij(R,R'> Pj("')l 

and depend principally on assignments 
objects a. 

PjCR') at 

J 
near object ai. 

It is of course essential to know where the 
support functions come from. In first stating the 
theory, it is enough to suppose that the si(!2;p)'s 
are "God-given". However, the principal task 
confronting the designer of a relaxation labeling 
applications is the definition of formulae for 
computing support functions. In Section III, we 
show how the distinction between consistent and 
inconsistent labelings can be used to constrain 
the choice of support functions. 

I FOUNDATIONS OF RELAXATION LABELING 

We begin by presenting a succinct summary of 
the theory developed in [Hummel and Zucker, 19831. 
For details and mathematical proofs, the reader is 
referred to the references. 

Let denote distinct objects, and 
tx l,...,XdLb e a s:t of possible labels. The goal 
is to assign one label to each object. In most We must first make the distinction precise. 

BY using support functions, we can extend the 
usual notion Of consistency (as defined, for 
example, in [Mackworth, 19771 and [Hardlick and 
Shapiro 19791) to reflect a quantitative system of 
preferences. We state here the definition for 
unambiguous labelings, and refer the reader to 
[Hummel and Zucker, 19831 for a discussion and the 
weighted labeling assignment version. 

practical s ys terns, measurements are made to 
describe each object a; , and a most probable 
label is assigned inde;endent of the - labels 

Relaxation assigned to - neighboring objects. 
iabeling is an iterative method for incorporating 
context and local consistency in weighted labeling 
assignments. In this model, a nonnegative weight 
P*(R) 
-0 Ject tc 

is assigned for each label X, at every 
normalized the 

N 

conditions 
~~=l Pin = 1, i = 1, . . ..n. The weighted 
labeling assignment pi(R) denotes a confidence 
level for the assignment of label X, at object ax. 

Suppose p E K*, which is to say that D 
assigns to each object ai a single label XI1., 
signified by pi(Ri) = 1. The unambiguous 1abeliAg 
p' is consistent iff -- 

'iCR iiT;> 2 si(R;P) for all R and i. 

The concatenation- of the weightned assignme& 
values comrise the assignment vector 
(5 l,***,Pn),'iii = (Pi(l), 

-v F L 
(m)). The space of 

possible assignment 
l **$Pi 

vectors i5 is the assignment 
space K. An unambiguous assignment p E K is an That is, at each object the maximum support value 

is attained for the label actually assigned to the 
object. 

assignment 
all and R. 

vector satisfying p,(R) = 0 or 1 for 
Because of th; normalization 

condition, an unambigous assignment gives a weight 
of 1 to exactly one label at each object. We The relaxation labeling algorithm, defined 

precisely in [Hummel and Zucker, 19831, is an 
iterative process for updating initial weighted 
labeling assignments in the assignment vector p" 
to achieve a consis tent assignment. 
Heuristically, the idea is to continuously 
increase pi(R) if ~~(2;;) is positve, and to 

denote the set of all unambiguous assignments by 
K*, and note that K is the simplex formed 
convex hull of K*. 

by the 

To apply the relaxation labeling method, 
constraints between neighboring labels are 
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decrease pi(g) if si(R;f;) is negative, subject t-0 
the constraint that i; 
space K. On the kth 

remain in the assignment 
iteration of the algorithm, 

the current assignment vector Fk is updated by 
first computing the updating vector ck E 
whose components 

oqmm, 

-k 
are given by q;(X) = si(R;p ), 

then projecting q onto the set to the 
space K at the point 

uk 
Fk 

tangent 
to yield a tangent 

direction and 
direction iik' by setting i; 

f ina 1 lg+l st;gpyfzk, izhe rL"," 

is a sufficiently small positive constant. This 
process is repeated until convergence. The 
projection operator required to obtain Ek from qk 
is described in [Mohammed, Hummel, Zucker, 19831. 

The formulation of relaxation labeling 
outlined above leads to a number of theorems, 
proved in [Hummei and Zucker, 19831. Two results 
of particular relevance here: 
I. If the relaxation labeling process stops at p, 
then '; is a consistent labeling. 
II. A strictly consistent unambiguous labeling 
(Si(Ri;i;) > si(!Z;i;) for R # Ri , all i) is a local 
attractor of the relaxation labeling algorithm. 

II DESIGNING SUPPORT FUNCTIONS 

Suppose that objects and label sets have been 
identified, and that formulae for support 
functions are required. The following method is 
suggested. 

Certain patterns of unambiguous labelings can 
be identified as consistent labelings. Suppose, 
for example, that an unambiguous assignment i -t 
R. , denoted succinctly by R' = (Rl...R,), is to be 
vtewed as consistent. Let F be the corresponding 
unambiguous assignment vector. Then we want the 
inequalities Si(Ri;Ij) 2 Si(R;p) t0 be satisfied. 
If the support functions are to be designed as 
linear functions of I;, these conditions can be 
written as 

z rij(Ri,R j) 2 1 rij(R,Rj), all 89 i. 

j j 

Suppose that Q1,...,rN are N distinct patterns of 
labelings which are deemed to be consistent. Then 
we want 

z ri j(%y,Rr) a z rij(R ,R!j) 
. 

to be satisfied for all R, ill i, for k = l,...,N. 
These conditions may constitute a large number of 
linear inequalities in the set of variables 
rij(E ,R '1. 

The system of inequalities may have no 
nontrivial solution, in which case it is 
impossible to design linear support functions with 
Q1 P".S IcN as consistent labeling patterns. 
However, if the system has a nonempty nontrivial 
solution set, then any assignment of values to the 
rij(R 3% '1 's satisfying the inequalities is called 
a feasible solution. In this case, linear 

programming methods (such as the simplex method) 
can be used to find feasible solutions. If the 
coefficients are chosen from the interior of the 
set of feasible solutions, then the solution is 
called strictly feasible, and Result II from the 
previous section can be used to show the given 
patterns i?'...EN will then correspond to 
unambiguous labelings which are local attractors 
of the relaxation labeling process. 

It may well happen that a strictly feasible 
solution for the r. .(R,R')'s will yield other 
consistent unambiguou~Jlabelings not represented 
in the design pattern set. This may be 
undesirable, and will require a search for a 
feasible solution which minimizes the problem of 
spurious consistent labelings. The second example 
given below illustrates a method for accomplishing 
this search. 

IV EXAMPLES 

Suppose that the graph of objects is given by 
a hexagonal grid, so that each object is 
equidistant from its six neighbors. Consider the 
simplest case of two labels. We suppose that the 
following local patterns are consistent: 

11 22 12 21 
111 222 112 221. 
11 22 11 22 

Further, we assume that the relationship of 
consistency is "isotropic," that is, a rotation of 
a consistent labeling is consistent. Since the 
labels 1 and 2 are treated symmetrically, we can 
also assume that rij(l,l) = rij(2,2) and rij(1,2) 
= rij(%r;i);heFirna:ly, we assume that the rii s are 
zero, , . s are independent of 1 and J as 
long as i and iJare distinct neighboring objects. 
Thus only two parameters are sought: a = 

rilf131) and b = r-.(1,2), for i and j distinct neig bors. 
Applying t e conditions for strict consistency to fiJ 
each of the patterns listed above leads to the 
single condition a > b. 

What other unambiguous local patterns are 
consistent in this scheme? It is not hard to show 
that (for a > b) a local pattern with a central 
object labeled "1" is strictly consistent if the 
number of the six neighbors with a "1" label, n 
is greater than the number of neighbors with a (1 1' " 
label, n2. Similarly, "2" is consistent for the 
central object if n2 > nl. A global unambiguous 
labeling will be consistent if every object is 
labeled with the majority label as voted by the 
six neighbors. Since this condition holds at 
every object, strictly consistent labelings 
consist of strips of l's and 2's with straight 
parallel interfaces between the regions. 

We next present a slightly more complicated 
example. However, practical situations will 
generally be much more complex than either of our 
examples. This time, consider a hexagonal array 



of objects with three labels. The labels "1" and 
“2” are regarded as "region types", and label "3" 
denotes "edge between l's and 2's." A pattern of 
constant l's or 2's, and a region of l's separated 
from 2's by a line of 3's are consistent 
labelings: 

11 2 2 3 2 
111 222 132. 
11 2 2 13 

We must also regard 

as consistent. As before we treat 
symmetrically, and assume isotropy. 

labels 1 and 2 the 

Five parameters arise: a = r(l,l) = r(2,2), b 
= r(1,2) = r(2,1), c = r(3,3), d = r(1,3) = 
r(2,3), and e = r(3,l) = r(3,2). Here i and j are 
suppressed since objects i and j can be only 
distinct pairs of neighbors. Note also that the 
r's are not necessarily symmetric -- if d # e, 
then regions can influence borders differently 
than borders influence regions. 

Each consistent pattern yields two 
inequalities to constlrain the five parameters. 
From the constant patterns, we deduce that a > b 
and a > e. From the pattern with a central line of 
3’s, 4e + 2c > 2a + 2b + 2d, and from the 
remaining patterrl we obtain 2a + d > 2e + c. 
Combining, we have 

a > b, a > e, and 

(a-e) + (b-e) < c-d < 2(a-e). 

It is easy to see that feasible solutions of these 
equations exist and can be readily constructed. 
In particular, choose any positive value for a', 
then choose b' < a', and e arbitrary. Set a = a' 
+ e, b = b' + e, and finally choose a value for c 
- d between a' + b' and 2a'. The values for c and 
d can be selected so that the difference is the 
specified value. 

The designated patterns, and all their 
rotations, will he strictly consistent under the 
compatibilities of any feasible solution. We will 
now try to select a feasible solution which gives 
rise to as few other consistent labeling patterns 
as possible. 

Let nk denote the number of neighbors of a 
central point of a hexagonal cell having label 
'1 I' 
k , for k = 1,2, or 3. The label "1" at the 

central object is part of a consistent labeling if 
its support, an1 + bn2 + dn3 , is greater than the 
support for the labels "2" and "3", i.e., dnl + 

an2 + dn3 and enl + en2 + cn3. From the two 
inequalities, 
we deduce that 

and the fact that n1 + n2 + n3 = 6, 
"1" is consistent if 

nl > n2 and [(c-d)+(b-e>]n3 < (a-b)nl+ 6(b-e). 

[(c-d)+(b-e)]n3 > (a-b)*max(nl,n2) + 6(b-e). 

Let us arbitrarily choose a = 1 and b = -1. 
Then e = 0 makes sense since "3" and "1" can 
co-occur. Having chosen a, b, and e, then 0 < c-d 
< 2. Suppose we choose c-d = 1. Then applying the 
conditions above, a central "1" is consistent if 

nl > n2 and nl > 3. for a "3" to be consistent, it 
suffices tzl:ave ma;g:l,;;ie: 3: Thus a pattern 
with a or In the center is 
consistent if there are four c)r more of the same 
label type in the neighborhood. A central "3" is 
consistent as long as there are two or fewer "1"'s 
and two or fewer "2"'s in the neighborhood. 

This seems 
pattern 

reasonable. However, note that 

12 
1x2 
11 

is consistent with x = 1 under the above choice of 
values. We would prefer the support for x = 3 to 
be higher than the support for x = 1 to justify 
the interpretation of label "3" as "edge". Thus 
we would like 6e > 4a + 2b. Having chosen a = 1, 
b = -1, we now see that e > l/3 is desirable. Let 
e = 213, whence -213 < c-d < 4/3. By varying the 
value of the one parameter c-d, different behavior 
of the patterns of consistency can be selected. 
For example, suppose we select c-d = l/2. Then a 
case analysis yields: 

A label "1" is consistent only if there are four 
or more "1" labels among the six neighbors, and no 
"2" labels; 

A "3" label is consistent if there are three or 
I' 'I more 3 labels among the neighbors, or if there 

are four of label type "1" or "2", and at least 
one of the other type. 

This example illustrates how an initial 
assignment of values to the r. .(R,R')'s obtained 
as a feasible solution can be :Jfined to give more 
desirable behavior by the addition of a 
constraint. In this case, the additional 
inequality arises when we decide to reject a 
spurious consistent pattern, and the statement 
that a particular label hsould have greater 
support than the otherwise consistent label. 
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