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Consider two wire gratings, superimposed and moving across each
other. Under certain conditions the two gratings will cohere into a

single, compound pattern/ which will appear to be moving in another
direction. Such coherent motion patterns have been studied for sinu-
soidal component gratings, and give rise to percepts of rigid, planar
motions. In this paper we show how to construct coherent motion dis-
plays that give rise to nonuniform, nonrigid, and nonplanar percepts.
Most significantly, they also can define percepts with corners. Since
these patterns are more consistent with the structure of natural scenes
than rigid sinusoidal gratings, they stand as interesting stimuli for
both computational and physiological studies. To illustrate, our dis-
play with sharp corners (tangent discontinuities or singularities) sep-
arating regions of coherent motion suggests that smoothing does not
cross tangent discontinuities, a point that argues against existing (regu-
larization) algorithms for computing motion. This leads us to consider
how singularities can be confronted directly within optical flow com-
putations, and we conclude with two hypotheses: (1) that singularities
are represented within the motion system as multiple directions at the
same retinotopic location; and (2) for component gratings to cohere,
they must be at the same depth from the viewer. Both hypotheses
have implications for the neural computation of coherent motion.

1 Introduction

Imagine waves opening onto a beach. Although the dominant physical
direction is inward, the visual impression is of strong lateral movement.
This impression derives from the interaction between the crests of waves
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adjacent in time, and is an instance of a much more general phenomenon:

whenever partiatly overlapping (or occluding) objects move with respect

to one another, the point where their bounding contours intersect creates

a singularity (Zucker and Casson 1985). Under certain conditions this

singularity represents a point where the two motions can cohere into
a c"ompound percept, and therefore carries information about possible

occlusfon and-relative movement. Another example is the motion of the

point of contact between the blades of a closing scissors; the singular
point moves toward the tip as the scissors are closed.

The scissors example illustrates a key point about coherent motion:

hold the scissors in one position and observe that it is possible to leave the

singular point in two different ways, by traveling 1n ole dire-ction onto
one" bhdb, or in another direction onto the other blade. Differentially
this corresponds to taking a limit, and intuitively leads to thinking of
representing the singular point as a point at which the contour has two
tangents. 5uch is precisety the representation we have suggested for
tan[ent discontinuities in early vision (Ztcker et al. 7989), and one of our

goals in this paper is to show how it can be extended to coherent motion
computations.

The previous discussion was focused on two one-dimensional con-

tours coining togethel, and we now extend the notions of singular points

and coherenl -otiorl to two-dimensional (texfure) patterns' In particu-
lar, lf a "screen" of parallel diagonal lines is superimposed onto a pat-

tern of lines at a difJerent orientation, then a full array of intersections
(or singular points) can be created. The proviso, of coufse, is that the

two palterns be at about the same depth; otherwise they could aPPear as

two iernitransparent sheets. Adelson and Movshon (1982) extended such

constructions into motion, and, using sinusoidal gratings, showed that

coherent compound motion can arise if one pattern is moved relative to

the other.
To illustrate, suppose one grid is slanted to the left of the vertical, the

other to the right, itta tnut they are moving horizontally in opposite di-

rections. The c"ompound motions of each singular point will then cohere

into the percept of a rigid texture moving vertically. Thus the compound

pattern can be atLalyzed in terms of its component Parts'
But compound motion arises in more nafural situations as well, and

gives rise t6 coherent motion that is neither rigid nor uniform. Again

io illustrate, superimposed patterns often arise in two different ways in
densely arborei foreit habiiats (e.g., Fig. 2 in Allman et al. 1985). First,

considlr an object (say a predator) with oriented surface markings lurk-
ing in the treei; the preditor's surface markings interact with the local

ori"entation of the foiiage to create a locus of singular points. A slight
movement on either pait would create comPound motion at these points,

which would then iohere into the predator's image' Thus, singular

points and coherent motion are useful for separating figure from ground'

il4ore co*plex examples arise in this same way, e.g.t between nearby trees
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Figure 1: Illustration of the construction of smooth but nonuniform coherent

*Ition patterns. The first component patteln (left) consists of a field of dis-

placed sLusoinal curves, oriented at a positive angle (with respel! to the ver-

Lcal), while the second component consists of disptaced parallel lines (right)

oriented at a negative angle. The two Patterns move across each other in op-

posite directiorrr, 
".g., 

patlrn oeft) is moved to the left, while pattern (right) is

^o.,r"d 
to the rightl Oiher smooth functions could be substituted for either of

these.

(Fig. 2), for which three coherent interpretations are possible (in addition

to ihe noncoherent, transparent one):

7. Two-dimensional sliding swaths, or a flat display in which the com-

pound motion pattern aPPears to be a flat, but nonrigid rubber

iheet that is deiorming inio a series of alternating wide strips, or

swaths, each of which Inorret up and down at what appears to be a

constant rate with "elastic" interfaces between the strips. The swath

either moves rapidly or slowly, depending on the orientation of the

sinusoid, and the inierfaces between the swaths apPeaI to stretch in
a manner resembling viscous flow. The situation here is the optical

flow analog of placii1g edges between the "bright" and the "dark'
swaths on a sinusoidal intensity grating'

2. Three-dimensional compound grating, in which the display appears to

be a sinsusoidally shaped stiircase surface in depth on which a cross-

hatched pattern has been painted. The staircase aPPears riSid' and

the cross-hatched pattern moves unilormly back and forth across

it. Or, to visualizi it, imagine a rubber sheet on which two bar
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Figure 3: Illustration of the construction of nommiform coherent motion pat-

terns with discontinuilies. The fust component Pattern (left) consists of a field

of displaced triangular curves, oriented at a positive angle, while the second

compinent again ionsists of displaced parallel lines (right) oriented at a neg-

ative angle. ihe two patterns move across each other as before. Again, other

functioni involving discontinuities could be substituted for these'

2.2 T?iangular variation. Replacing the sinusiodal grating with a tri-

angular one illustrates the emeigence of percepts with discontinuities,

o."rhurp corners. The same three percepts are possible, under the same

display conditions, except the smooth patterns in depth now have abrupt

.t-ru.rg"r, and the swathi in (1) have clear', segmentation boundaries be-

tweei them (see Figs. 3 and 4). Such discontinuity boundaries are partic-

ularly salient, and Jiffer qualitatively from patterns with high curvatures

in them (e.g., high-frequency sinusoids). The subjective impression is as

if the sinus6idaipatterns give rise to an elastic percept, in which-the im-

aged object stretches andlompresses according to curvature, while the

trlangular Patterns give rise to sharp discontinuities'

2.3 Perceptual Instability. To determine which of these three possi-

ble percepts 
^are 

actually ,"etl, *" implemented the above displays on

a Slirr-r6oii., 3650 Lisp Machine. Patterns were viewed on the console

as black dots on a trfigtrt white background, with the sinusoid (or tri-
angular wave) construlted as in Figure 1. The patterns were viewed

inf"ormally by more than 10 subjects, either graduate students or visitors

to the laboratory, and all reported a spontaneous shift from one percept

to another. Percepts (1) and (2) seemed to be more colrunon than (3),

but individual variation was significant. The spontaneous shifts from
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3 Local Analysis of Moving lntersections

where v - (q,uz)t.
Thus, the velocitY of

obtained as the solution
Cramer's rule):

l/i(i) = v

the intersection of two moving lines can be

to a matrix equation, and is as follows (from

51

Given the existence of patterns that exhibit nonuniform compound mo-

tion, we now show how the characterization of rigid compound motion

can be extended to include them. To begin, observe that one may think
of compound motion displays either as raw patterns- that. interact, or

as patterns of moving "inlersections" that arise from these interactions.

Concentrate now on tI-re intersections, and imagine a Pattern consisting of

gratings of arbitrarily high frequency,,so that the individual undulations

In.it1tito lines. Each iniersection is then defined by two lines, and the

distribution of intersections is dense over the image. (Of course, in real-

istic situations only a discrete approximation to such dense distributions
of intersections would obtain.)

Now, concentrate on a typical intersection, whose motion we shall cal-

culate. (observe that this ttotar ro. each point in the compound image.)

The equations for the lines meeting at a typical intersection x = (:r,y) can

be written
n1'x= Qtafi
II2'X= c2*U2t

where rri, i, = 1,2 are the normals to the lines in the first and the second

patterns, respectively, c, are their intercepts, and ui are their (normal)

velocities. observe-that the simultaneous solution of these equations

is equivalent to the Adelson and Movshon (1982) "intersection of con-

straints" algorithm (their Fig. 1). In matrix form we have

We can rewrite this equation as

Nx(1) : s 1;t
Differentiating both sides with respect to t, we obtain

(nt n12 1/r(/)\-/rr +r'r/)
\rl n22) \ y(l) l \r'2 r u2t I

l'tnr - l'ln12
i(t) = ;l\

- t)1T 21 + U21111g(t) = a-
where A is the matrix determinant , A. = n1n22 - n12n21, and x(t) = Li(t)'

a(t)).
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Before beginning, however, we must stress that there is not yet suf-

ficent information to state precisely how the computation of compound

motion is carried out physi,ologically, or what the precise constraints are

for coherence. The analysis in-the previous section lepresents an ideal-

ized mathematical competence, and its relationship to biology remains to

be determined. Nevert^heless, several observations are suSgestive. First,

it indicates that one need not try to implement the graphical version

of the Adelson and Movshon (1182) "intersection of constraints" algo-

dthm literally, bwt, now that the mathematical requirgTenis are-.given'

any number'of different implementations become viable formally. Bi-

olJgically it is likely that the computation- involves several stages, and

the"evidence is that initial measurements of optical flow are provided by

cells whose receptive fields resemble space-time filters, tuned for possi-

ble directions of (normal) motion (Movshon et al. 1985). Abstractly the

filters can be thought of as being implemented by (e'g') Gabor functions'

truncated to local iegions of spice-time. Such filters provide a degree of

smoothing, which is"useful ii removing image qrrantization and related

affects, bJt *nicf, also blurs across distinctions about which filter (or fil-

ters) is (are) signaling the actual motion at each point. In fact, because of

their broad tuiing, ,r,ar-,y ur" usually firing to some extent. An additional

selection pro""rrl thus required to refine these confused signals, and it
is in this ielection process tirat the inappropriate regularization has been

postulated to take Place.
To illustrate, a ielection procedure for compound motion was Pro-

posed by Heeger (1988) from the observation that a translating com-

pound grating"occupies a tilted Plane in the frequency domain' (This

io*", iom tf,e facf that each translating sinusoidal grating occupies a

pair of points along a line in spatial-frequ-ency sPace; the plane is defined

Ly t*o'lir,"s, one fiom each clmponenf grating.) After transforming the

iabor filters' responses into energy terms, Heeger's selection Process re-

duces to fitting a plane. Howevei, the fitting cannotbe done pointwise;

rather, u,, urr"Lg" is taken over a neighborhood, effectively smoothing

""r.Uy 
values tJgether. This is permiisible in some cases'7 e'g'' for the

olanar. rieid patterns that Adelson and Movshon studied. But it will fail

ior the 
"*lu*pt", 

in ihis papeL rounding off the corners within the trian-

gle waves. Ii cannot na"ai" transparency either, because a single value

is enforced at each point (only one plane can be fit)' Other variations in

this same spirii, based on Tlkhonov regularization or other ad hoc (e.9.,

"winner-taie-all") ideas, differ in the averaging that they employ' but

stili impose smoothness.and single-valuedneis on the solution (Bulthoff

et al. 1b89; Wang et al. 7989; yuitle and Gtzywacz 1988)' They cannot

work in general.
A diflerent variation on the selection procedure relaxes the require-

ment that only a single value be assigned to each position, incorporates a

highly nontnLar typ"e of smoothin&ind isdesigned to confront disconti-

,-rr"itiJ, directly. Itis best introduced by analogy with orientation selection
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compound motion as well. That they further provide the basis for inter-
polation (Zucker and Iverson 1987) and for defining regions of coherence
also seems likely.

The triangle-wave example deserves special attention, since it pro-
vides a bridge between the orientation selection and optical flow compu-
tations. In particular, for nonsingular points on the triangle wave, there
is a single orientation and a single direction-of-motion vector. Thus the
compound motion computation can run normally. However, at the sin-
gular points of the triangle wave there are two orientations (call them
no and nB); each of these defines a compound motion with the diagonal
component (denoted simply n). Thus, in mathematical terms, there are
three possible ways to formulate the matrix equation, with (n., n),(nB,n),
and (no, nB). The solutions to the first two problems define the two com-
pound motion vectors that define the corner, while the third combination
simply gives the translation of the triangle wave at the singular point.
In summary, we have:

Conjecture 1. Singularities are represented in visual area MT analogously
to the way they are represented in Vl; that is, via the activity of multiple
neurons representing different direction-of-motion vectors at about the same

(retinotopic) location-

We thus have that coherent pattern motion involves multiple data
concerning orientation and direction at a sin8le retinotopic location, but
there is still a remaining question of depth. That depth likely plays a
role was argued in the Introduction, but formally enters as follows. Re-
call that the tilted plane for rigid compound motion (e.9., in Heeger's
algorithm) resulted from the combination of component gratings. But a
necessary condition for physical components to belong to the same phys-
ical object is that they be at the same depth, otherwise a figure/ground
or transparency configuration should obtain. MT neurons are known to
be sensitive to depth, and Allman et al, (7985) have speculated that inter-
actions between depth and motion exist. We now refine this speculation
to the conjecture that

Conjecture 2. The subpopulation of MT nellrorTs that responds to com-
pound motion agrees with the subpopulation that is sensitive to zero (e:r

to equivalent) disp arity.

There is some indirect evidence in support of this conjecture, in that
Movshon el al. (1985) (see also Rodman and Albright 1988) have re-
ported that only a subpopulation of MT neurons responds to compound
pattern motion, and Maunsell and Van Essen (1983) have reported that a

subpopulation of MT neurones is tuned to zero disparity. Perhaps these

are the same subpopulations. Otherwise more complex computations
relating depth and coherent motion will be required.

As a final point, observe that all of the analysis of compound motion
was done in terms of optical flow, or the projection of the (3-D) velocities
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