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Abstract 

Geometric hashing systems for  object recognition 
have typically made use of  point features in  order l o  
describe models and objpcts. When lines have been in- 
cluded as primitive features, they have been used to 
generate collections of  points from pairwise intersec- 
tions. In the experiments descrzbed in  this paper, we 
use line features that include location and oraentation 
information. These features, for  which the orienta- 
tion information is an attribute, are incorporated into 
a geometric hashing system using weighted voting in 
order to effect a Bayesian- based iriaxiiriuin likelihood 
object recognition system. We show results o f  this sys- 
tem which is the first example of the use of attributed 
features (features with more than coordinate positaon 
znforniation) in  a geometric hashing application. 

1 Introduction 

(:eometric hashing is a method that uses combina- 
tions offeature vectors to index into databases of mod- 
els. As an object recognition system, geometric hash- 
ing can be an effective and efficient way of using spatial 
arrangements of features to  locate instances of mod- 
els. A description of the geometric hashing method is 
given by Lamdan and Wolfson [I  11, and early proto- 
type systems have given good results [9,10]. Numer- 
ous systems based an recognition of point patterns and 
space curves have been demonstrated [13,3,7,8,5]. A 
parallel implementation on a (:M-2 is reported in [ 141. 

The purpose of a geometric hashing system for ob- 
ject recognition is to locate instances of models in a 
scene. A model is a pattern of features that may be 
embedded in a scene after a transformation from a re- 
stricted class of allowable transformations. A scene 
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is a collection of features extracted from an image. 
The search problem of locating instances of models 
embedded in a scene is confounded by the existeiic,r 
of an unknown transformation, by obscuration that, 
can occm, and by noise that can cause deviations of 
the features in the scene. Geometric hashing uses a 
transformation-invariant hash functions to speed the 
searc.h. 

An error analysis of possible configurations of eni- 
bedded, noisy models in scenes show that hash func- 
tions on minimal collections of features may not) pro- 
vide much in the way of discrimination power, antl 
thereby may lead to failure of the method in practi- 
cal object rec.ognition systems [4,2]. These difficulties 
can be circumvented by ( 1) using siiriilarity invariance 
instead of affine or perspective invariance, (2) using 
weighted voting, as developed in the thesis of Rigout,- 
SOS [12], and ( 3 )  using attributed feat,ures, i.e., features 
endowed with additional inforination that can h e  used 
to filter the matches, as advocated by (lalifano [ l ] .  In 
this paper, we use all these strakgies to rrducc false 
alarms. Our emphasis, however, is on the use of the 
t,hird strategy: placing attribut,es on features to enahle 
matching filtered by an extra criterion. In our case, 
the features are still point locations, but will carry the 
additional information of an orientation attribute. 

2 Formulation 

We will describe a particular formulation of a geo- 
metric hashing system using point features antl orien- 
tation attributes. This systern will be used to tincl ob- 
jects in realistic images using models consisting of line 
segments. We will use similarity transformations (ro- 
tation, translation, 
for recognition. 

A single feature 
and an orientation 

and scale) as the invariance class 

consists of a point location ( x >  y) 
8. Orientations are not directed, 
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so 0 5 6 < R .  In practice, B is stored as a c.osine/sine 
pair to avoid trigonometric evaluations. 

A model consists of a prototype collection of fea- 
tures {(xi, yi,Bi)}F=l. We will have many models, 
M i  , . .  . , Ad,, so that Mk = { ( ~ k , i ,  y k , i ,  f I k , i ) } ; & .  Dif- 
ferent models may have different number of features. 

If T is a similarity transformation, then T can be 
described as a translation by some vector ( a , b ) ,  fol- 
lowed by a rotation angle 4,  followed by a scaling by s. 
Although T is a transformation of point features, it ex- 
tends to an operator T on attributed features (2, y, 0) 
by transforming (x,y)  to  T ( z , y ) ,  and rotating B to  
6 + 9. This is because a line through the point (2, y) 
having orientation B will be transformed under T to 
a line through T ( z ,  y) having orientation B + 4. The 
new orientation should be regarded as being modulo 
R ,  so that 

P ( x ,  y ,  e)  = ( T ( z ,  Y), B + 4 mod T). 

The object recognition problem c,an be stated very 
simply. Given a collection of models M I ,  . . . M,, 
with eac.h model formed by a set of features 
Mk = { ~ 2 k , ~ , ~ k , i , 6 k , i ) } ~ ~ ~  and given a scene S' = 
{ (2j  , yj , Bj)}5,11 find i n s t a n c e s  of models in the sc.ene. 
An instance is defined to  be a model number k ,  a 
transformation T ,  and a subset 5'' of $5' such that for 
each feature (ij , yj , 6 j )  E 5" in the subset of scene fea- 
tures, some transformed model-feature approximates 
it: F(zk,i,yk,i,ek,i) x ( i j , y j , ~ j ) .  In order to be a 
valid instance, the number of features in the subset S' 
must be some large fraction of the number of features 
? l k  in model Mk.  

3 Geometric Hashing 

(kometric hashing may be used to  organize the 
search for instances of models in scenes. Our pre- 
sentation will be specific to the problem of similarity- 
invariant matching of models composed of point fea- 
tures attributed with orientation information. A much 
more general presentation can be found in [B, in prepa- 
ration]. . 

In a preprocessing phase, information about the 
models are stored i n - a  hash table. Models are re- 
dundantly encoded. Every model is enc,oded once for 
every reasonable basis set within the model. For our 
purpose, a basis set is simply a pair of points. As a 
hash function, we use a similarity-invariant computa- 
tion of coordinates of a feature relative to a basis set. 

SpecXcally, consider model Mk and basis points 
(zk,,, ~ k , , ,  B k , , ) ,  (ZL,,, Y k , u , & , u )  from model k ,  which 
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Figure 1: The construction of the hash function, 
'L(P,, P u ,  P I .  

we will denote by p ,  and p ,  respectively. For every 
other point p = ( z k , i ,  Y k , i ,  B k , i )  in M k ,  we define 

W P , ,  P U l  PI = (t> 9, VI), 

where ([, 1 1 ,  $) gives the feature value of T ( p ) ,  where 
T is defined to  be the similarity transformation such 
that 

T ( Z k , j I ,  Y k , p )  = ( - I D -  0) 

T ( Q , U l  Yk,u) = ( I / %  0) 

Figure 1 displays graphically the definition of the hash 
funchon h.  The hash function yields a vec,tor with 
these components, and unlike the typical computer 
sc,ience notion of a hash function, h is continuous in 
all its variables. 

The hash space consists of a set of entries. For the 
model Mk , and for basis pair p ,  and p ,  , there are 
entries, each associated with h ( p , , p u , p )  for p E Mk.  

An entry is tagged  with the information ( M k , p j I , p , )  
(which can be encoded using the indices as point#ers), 
and has a location in three-dimensional hash space 
given by the hash value. 

In the recognition phase, features are ext,ractetl 
from a scene, yielding a set of attributed points S = 
{Fj = (2j  , yj ,  8j)}5,1. A pair of points are c.hosen as 
a t r za l  bas is ,  say p a  and p a .  Using the trial basis, we 
perform a set of probes ,  which together constitute a 
single t r ia l .  A probe consists of the c.omputation of 

10 



a hash value h(p,,pp,p) = ( [ > 7 1 , 6 ' ) ,  based on a point 
p E ,h' and then a determination of all entries that  
lie close to  ( ( , ? I , @ )  in hash space. For each such en- 
try, we can compute a distance from its location to 
((, 9 ,  e ) ,  and we then increment an accumulator as- 
sociated with its tag (a model number k and a pair 
of point indices in Mk,  say ( p , ~ ) ) ,  by an amount re- 
lated to that distance. This is done for every entry 
near ((, ? 1 , @ )  and is repeated for all possible probes as 
p varies over S. The Bayesian reasoning interpreta- 
tion, given in the next section, allows us to  specify the 
metrics and functions. 

4 Bayesian Reasoning 

Let us suppose that model Mk is embedded in the 
scene, and that after renumbering the scene points, 
the points 61, . . . , in, E S correspond to an instance 
of t,he model. For the moment, we are assuming that 
all features of model Mk are present in the scene. Let 
us also suppose that scene points l j l ,  p z  are chosen 
as a trial basis. If there is no noise, then each of the 
probes / i ( f i l , p z , Z j j ) ,  for j = 1 , .  . . i l k ,  should land on 
entry with tag ( k , p , v ) ,  where Mk is the embedded 
model and p , ,  p ,  is the pair of points in Mk cone- 
sponding to j j 1  , p z  in S. Indeed, the set of entries with 
tag (k, p >  U )  are formed by computing h ( p , ,  p , ,  p ) ,  for 
p E jMk, and thus constitute an image of MI, normal- 
ized by ( p , , p , ) .  Likewise, with the scene points S 
are normalized with respect to h(pl,pz), and the em- 
bedded model p j ,  j = 1 , .  . . , n k ,  will map to the same 
image. Indeed, not only will all locations match, the 
orientation information should also match in order for 
the instance to be a valid embedding. In fact, even 
the orientation information of the transformed basis 
points should match. 

In the presence of noise, there will be in the po- 
sitions of the normalized features in the hash space. 
We will assume that individual features in the scene 
domain are subject to Gaussian perturbations. Thus 
a position of feature (z, y) belonging to  a model in the 
sc.ene can be perturbed by a distance in the Euc.lidean 
plane with standard deviation U ,  and the orientation 
0 can be rotated by an angle whose standard devia- 
tion is T radians. In practice, we rneasure the angle 
deviation using the sine of the angle difference, rather 
than the actual angle difference. For small angular 
perturbations, the two are the same. 

At this point, we must assume independence of the 
perturbations. The validity of this assumption will de- 
pend on the models and choice of the features. Inde- 
pendenc.e means the following: IJnder the assumption 

that a particular model Mk is embedded in the scene. 
and under the assumption that basis pair p ,  and p ,  i n  
Mk match a particular basis of scene points, say fi l  and 
$2 then the density distribution func,tion in (z, y> 8) 
space for any collection of t features, t <_ s, is sim- 
ply the product o f t  density distribution functions in 
(zl  y, @)-space for single features. We discuss the valid- 
ity of the independence assumption for various feature 
representations (using orientation-attributed features) 
in the next section. 

lJsing this assumption, we find that the joint den- 
sity distribution of the features of the embedded model 
are Gaussianly-distributed. In order to compute the 
probability that a particular configuration of i l k  scene 
features matches a model Mk with respect to a partic- 
ular set of correspondence, it suffices to sum the rel- 
ative Gaussian perturbations, in (2, y, 8) space, mea- 
sured as a fraction of the individual standard devia- 
tions, and to  normalize the result relative to all other 
hypotheses. In practice, using a maximum likelihood 
classifies dictates that  we wish to minimize the sum of 
the individual deviations, measured in terrns of stlati- 
dard deviations. 

While we will not give the detail here, i t  turns out 
that  the same holds true in the hash space. That  is, 
for a given trial basis pair in the scene space, the pro- 
jected image of the model Mk in the hash space will 
have (an approximate) Gaussian distribution, both for 
individual hashes, and for the joint density distribu- 
tion of the collection of features. 

Accordingly, for any given model Mk and basis pair 
p , ,  p ,  in bilk, the probability that Mk is present in the 
scene with p , ,  p ,  matching 61, 6 2  is related to a surn 
of deviations. Each deviation is computed by finding 
the closest hash from the scene, i.e., / i ( j j l l l j 1 ~ , P ) ,  over 
@ E ,5', to a given entry associated with model Mk and 
basis p ,  v ,  and measuring the distance relative to the 
expected c0varianc.e about that  entry. 

This is precisely what the geometric hashing algo- 
ri thm, using weighted voting, accomplishes. Instead of 
performing a sum over all entries, we use scene hashes, 
and only accumulate scores for nearby entries, which 
amounts to the same thing. Although we again omit 
all details and further justifications, the following for- 
mulas are used in our experiments. 

Let / ~ ( @ 1 > Z j ~ , f i )  =  TI TI,^) represent a hash of a 
scene configuration. Suppose an entry at  location 
(x, y, 6 )  is nearby, and is associated with model M k ,  
basis pair p , ,  p , .  The vote given to model/basis 
(k, P I  U )  is 
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exp ( - (((< - .I2 + (71  - Y ) ’ ) l l ~ Z  - $1 ItZ + s i n 2 ( 4  - ”’))) 
0 2 ( 4 ( 2 2  + 9) + 3) 2 r 2  

In this formula, s is the total number of features 
in the scene, and 7ik is the number of features in 
model h l k  and ( l l j ,  - $111 is the separation distance 
of the trial basis point in the scene, measured as Eu- 
clidean distance in (T, y)-space. To initialize the pro- 
cess, model/basis (le, p,  v) begins with a bias of 

1 .  [ *5 - q - 4 % a t ?  - 9 )  

s - q - ( Y ( 7 i Z  - 4) 
(-5 - (I) 1% 

We have used the assumption that all model/basis 
combinations are a priori equally likely. A major com- 
plication in deriving these formulas, and an innovative 
contribution of this work that has not been used be- 
fore in geometric hashing, is that  the formulas account 
for the fact that  the number of features i l k  in a model 
can vary. 

5 Feature Extraction 

The experiments done by Lamdan and Rigout- 
SOS [ l l , l2]  use interest points such as high curvature 
points as the features. Line features are used in Tsai’s 
approach [15], represented by the parameters ( T ,  0) .  
We are also interested in line features, but our ap- 
proach is different from Tsai’s approach. The idea 
is that  we still use interest points, although now the 
interest points are attached with attributes. For a de- 
tected line feature, we use as the attribute the direc- 
tion of the line. By using the attributed point features, 
the false alarm rate is reduced. 

For a line segment detected in the image, we can use 
(1) the endpoints of the line segment, or (2) the mid- 
point of the line segment as the point features. The 
direction of the line segment is used as its attribute. 
In the case of (1) above, there will then often be two 
or more features a t  the same location with different 
orientations, since line segment endings often occur a t  
vertices. 

For simplicity, we assume that the directional infor- 
mation is independent of the positional information, 
so that the probability density functions are separa- 
ble. Thus the orientation attribute is used to  modify 
the weight computed by the positional information of 
the point features, by adding on a term that penalizes 
for orientation inaccuracies. 

If we use the endpoints of the line segments (op- 
tion (1)) as the attributed point features, the two fea- 
tures are not really independent of each other. How- 
ever, in our experiments, this feature also works fine. 

The main disadvantage of this case is that  the number 
of features is doubled c.ompared to utilizing midpoints 
as the features. 

Theoretically speaking, the use midpoints as the 
features (option (2)) is more reasonable, since given 
the information of one midpoint, we cannot predict) 
the appearance of the other midpoints. However, the 
features will not be as stable in practice. 

When using attributed point features, there is ex- 
t ra  information attached to  the basis points. To form 
a hypothesis, we only make use of the positional in- 
formation of the selected basis. We rnay use the di- 
rectional information of the selected basis to filter out, 
unlikely hypotheses. 

6 Experimental results 

This section contains three sets of experiments. 
The first set of the experiment is based on synthesized 
images. Fifteen polygonal objects are stored in the 
model database. We c.ompare the recognition results 
using three different methods: 

1. High curvature points as features, without, ori- 
entation attributes; 

2.  Endpoints of the line segments as the attributed 
point features, with a separate entry for each 
oriented segment emanating from point; 

3. Midpoints of the line segments as the attributed 
point features, with a single entry using the line 
orientation as the attribute. 

For each method, a hash table containing entries is 
built and recognition results are assessed. In the case 
of method (2), we ignore the lack of independence of 
the features. A test scene with an embedded model 
is generated. For each method, features are extracted 
from the test scene. 

The program generates 25 trials randomly for each 
data  set. The number of features in the model poly- 
gons varies from five to  fourteen for method ( l ) ,  five to  
thirteen for method (2),  and ten to  26 for method (3) .  
The size of the hash table for each method is shown in 
Table 1. Note that the size of hash table for method 
(2) becomes almost eight times as the size of the hash 
table for method (3) .  

Figure 2 shows the trial with highest vote for using 
high curvature points as features using method (1). 
Although there is a probe which can rec,ognize the 
object correctly (see Figure 3) ,  the total weight is a 
little lower than the weight for the probe in Figure 2. 
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Feat tires 
(1)  High curvature points 
(2) Endpoints of line segments 
(3)  Midpoints of line segments 

Table 1: The size of hash t8ables for different features 
extraction methods for simulated polygonal objects. 

Size of hash table 
139676 bytes 

1522980 bytes 
195788 bytes 

The result of using method (2)  and method ( 3 )  for 
the same test scene is shown in Figures 4 and Figure 5 
respectively. The results demonstrate the ability of 
reducing the false alarm rate by using attributed in- 
formation. Tha t  is, only a few candidates pass the 
"filter" and need to be verified further. (:onsistent 
results are obtained with other test scenes. 

The second set of the experiments uses real images 
which are taken from the street. Fourteen car mod- 
els (containing seven kinds of cars) arr used in the 
model dahbase,  which is shown as Figure 6. The 
models are built by scanning the pictures (using a Sil- 
ver scanner) arid removing the background. The t,he 
k s t  image is a different, tinretouched image, and was  
taken a t  different position as the one used for the cor- 
responding model. Further, the test image (shown as 
Figure 7) is derived from a Sony CCD camera. The 
result of feature extraction is shown at the top right 
corner of Figure 8,  using met.hod (3) .  The experiment) 
shows that the correct model is identified even under 
such c.omplicated background c.onditions. The model 
was transformed with the parameters derived from the 
niat,ching basis sets, and is shown overlaid on t,he orig- 
inal image in the top left corner of Figure 8. 

Finally, we prepared a set of experiments using in- 
dustrial parts imaged by a (X;D camera. The col- 
lection of parts is shown in Figure 9. IJsing method 
( 3 )  for feature extraction, a hash table database was 
created from the models without cleaning the images. 
Figure 10 shows an example of a successful recognition 
of an example of a model in a test scene, and Figure 11 
shows an unsuccessful test. In the nnsuccessfiil case, 
the tlifficulty is that  the resolution of the embedded 
model is coarse due to its small size. Accordingly, the 
errors in position and orientation of the normalized 
features are relatively large. no matter which basis 
pair is chosen. This experiment underscores the need 
for stable arid accurate feature extraction. 

Figure 2: The probe with highest vote for using high 
xirvature points as features. The organization of thit 
figure is: (Top left) the recognition result of the probe 
with the highest vote overlaid on the original image 
(Top right) feature extraction (dots) and the snccess- 
fu1 trial hasis (dots bounded by a ranctangle); and 
(Bottom) the top nine model-basis combinations that, 
received the most vote corresponding to this trial. 
The white bar shows the lengt,h-encoded weight for 
each model-basis with respect tlo the maximum of the 
weight received among all hypotheses. In this case, 
where point features are used without orientation at- 
tributes, the highest vote is for an incorrect match. 

7 Conclusions 

We have shown that the use of orientation infornia- 
tion as an attribute to point features based on edge 
extraction can be used to  significantly enhanc.e the 
performance of geometric hashing as an object recog- 
nition system. In particular, we have seen that t>he 
orientation information filters out false recognitions. 
We have made use of a weighted voting scheme with a 
Bayesian foundation, incorporating a noise model for 
the feature components, including the orientation fea- 
ture. Our experiments include large model databases, 
with varying numbers of features in each model. 
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Figure 3: Again, using unattributed features (method 
(1) for the feature extraction). The correct match is 
shown, which in this case received a lower vote than 
the previous trial. 

Figure 4: The correct recognition by using endpoints 
of line segments as features (Method (2)). 

Figure 5: The c0rrec.t recognition by using midpoints 
of line segments as features (Method ( 3 ) ) .  

I I 

I I 
Figure 6 :  The fourteen car models used in the exper- 
iment. 
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Figure 7: The test image-a Buick Lesabre. 

I 

Figure 8: The correct recognition by using midpoints 
if line segments as features for test image Buic,k 
Lesabre. 

Figure 9: The collection of industrial parts. Some 
nodels have multiple stable states. For example, 
node1 5 has six stable states which are shown as 
nodel5.1 through model-5.6. 

Figure 10: The correct recognition of an industrial 
)art by using midpoints of line segrnents as features. 
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Figure 11: An incorrect recognition of the industrial 
part using midpoints of line segments as features. 
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