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Abstraci—A relaxation process is deseribed and is applied to the
detection of smooth lines and curves in neisy, real world images,
There are nine labels associated with each image point, eight labels
indicating line segments at various orientations and one indicating
the no-line case. Attached to each label is a probability. In the re-
laxation process, interaction takes place among the probabilities
at neighboring points. This permits line segments in compatible
orientations to strengthen one another, and incompatible segmenis
to weaken one another, Similarly, no-line labels are reinforced by
neighboring no-line labels and weakened by appropriately oriented
line labels. This process converges, in only a few iterations, to a
condition in which points lying on long curves have achieved high
line prebabilitics, while other points have high no-line probabilities.
There is some tendency, under this process, for curves to thicken;
however, a thinning procedure ¢can be incorporated to counteract
this. The process is effective even for curves of low contrast, and
even when many curves lie close to one another.

Index Terms—Curve detection, line detection, picture process-
ing, relaxation, scene analysis.

I. INTRODUCTION

OST approaches to locating lines or curves

in pictures begin by applying local line detectors

[10]. These detectors are operators which perform mea-

surements on a small neighborhood of the original picture.

A strong response from a detector is usually interpreted

as an indication of the presence of a line segment in that

neighborhood. Once detected, these line segments are
joined into more global lines or curves.

When the curves in the picture are relatively perfect, Le.,
when they are without gaps and when they differ every-
where from a background which is noise-free, the single
interpretation of the detector’s response is reliable. Curves
in real world imagery, however, are not that clean. The
local deteclors often return responses which are due pri-
marily to noise effects: a strong response may occur when
no line segment is present, or, on the other hand, a weak
response may occur when a segment is present. There is
no one-to-one relationship between a detector response
and the existence of a line segment. Thus, in order to in-
terpret the detector responses correctly, additional in-
formation must be used.
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In limited domains, such as the blocks world, semantic
knowledge about the physical structure of blocks can be
vsed as an aid in the line detection {Shirai [13]; see also
Zucker et al. {181). More generally, the pictorial context
can be used to disambiguate a detector’s response. One way
to do this is to evaluate detectors of many different sizes
and suppress nonmaximal responses (Rosenfeld [12]).
Other methods use the orientation information to bridge
gaps between segments (e.g., 0’'Gorman and Clowes [8]).
This enables tracking algorithms to travel from one strong
detector response Lo another and thus extract the legiti-
mate lines or curves {e.g., Horn [4]). However, since the raw
detector responses are often ambiguous (or incorrect}, and
since tracking algorithms are highly sequential, many
wrong turns are taken. T'o recover, significant backtracking
is necessary. This lack of global perspective can be over-
come by the application of optimization techniques, but
only at greatly increased computation cost {(e.g., Martelli
[6] and Montanari [7]). Such techniques require, in prin-
ciple, knowledge of the space of all possible curves in the
picture before the optimum can be selected.

One way to improve the various methods for finding
curves would be to improve the output of the local line
detectors. One of the purposes of this paper is to develop
a parallel relaxation technique which enhances these de-
tector outputs. At the same time it aids in changing the
detectors’ responses into a symbolic form (see Marr [5] for
a discussion of the use of symbols in low-level vision). The
parallelism is appropriate because the context around
every point is useful in interpreting the response of the
detector centered at that point. The symbols correspond
to assertions about the existence of line segments with
given orientations. The relaxation process then attempts
to accumulate evidence useful for deciding which lahel
assertions are most appropriate. Placing the detector re-
sponses in this symbolic form makes the subsequent task
of following curves much more tractable.

1I. RELAXATION LARELING

The present approach to curve enhancement derives
from a previous theoretical study of labeling by relaxation
processes [3]. In that study relaxation was shown to be an
effective technique for resolving labeling ambiguities by
using contextual information. For curve enhancement, the
ambiguities in detector responses are resolved by using
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information from the region surrounding each detector.
Before the new approach to line enhancement is detailed,
however, a general review of relaxation labeling will be
given.

Relaxation operates on objects with labels attached to
them. Then, through the use of appropriately defined
compatibility relationships between labels, some labels are
strengthened and some are weakened or eliminated. More
specifically, let a = {ay,09, - - - ,a,} be a set of objects, per-
haps derived from a picture. Let A = {Ay,Az, + + » ,An} be the
set of labels which indicate possible interpretations for
these objects. For example, in the curve enhancement
application, the objects are the individual picture points
and the labels correspond to interpretations of these pic-
ture points either as part of a curve with some orientation,
or as not part of a curve. For another example see Waltz
[17].

Attached to each label A is a quantity p;(\) which de-
notes the probability (or, more precisely, an estimate of the
probability) that A is the correct label for the object a;.
These probabilities must always satisfy the condition:

Z pi(A) =1, (1)

MEA
where A; is the label set for object a;.

In addition to the foregoing, a neighborhood relation is
specified on the set of objects. The relaxation process
updates the estimated probabilities by iterating an oper-
ator which we may call F. At each iteration, the new
probabilities p/**''(A) are functions of both the old
probabilities p/*'(A) on the given object, and the old
probabilities p*'(X\’) on the neighboring objects.

There are three basic kinds of contributions that one
iabel A’ can make to another label A on a neighboring
object:

1) if A’ and A are semantically compatible, i.e., if they
co-occur frequently with one another on neighboring
objects, then p(A’} should contribute positively to the
computation for p(A);

2} if X’ and X are semantically incompatible, i.e., if the
occurrence of one implies that the other cannot also occur,
then p(X\') should contribute negatively to p());

3) if there is no relation between the two labels, then one

should not influence the other.
In general there are many intermediate situations, and
compatibility functions must be used to weight the inter-
actions between pairs of labels. Compatibility functions
behave much like correlation functions between events of
the form “a; has label A and “a; has label \.” A compa-
tibility function can be defined as a mapping

rijih; X A — [-1,1]

t=12,--+,n

such that for condition 1) above, r;; approaches 1; for
condition 2), r;; approaches —1; and, for condition 3), r;;
is near 0. Thus, both positive and negative influences can
propagate during relaxation. (See Arbib [1) for a discussion
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of a possible role such cooperating and competing pro-
cesses may play in brain theory.)

The updating process can now be expressed in termns of
these compatibility functions. Let ¢'*'(\) represent the
correction applied to p!**(A) in the (k¢ + 1)st iteration to
obtain p#* 1 (\):

pM M1 + ¢

pTIO) = :
Z [P +¢M])
A

{2)

The denominator in (2) is a normalization factor necessary
to guarantee that the sum of probabilities {1) remains
equal to 1. (See [9] for a more detailed discussion of this
equation.) This correction can be defined as a weighted
sum of the probabilities on the labels attached to neigh-
boring objects acting through the compatibility func-
tions:

WA =2 d; [? r.‘j()\,)\')P}kJ{X)]- 3
j

The coefficients {d;;) weight the total influence that object
a; can have on g, subject to Z;d;; = 1. Thus, in general, the
final distribution of probabilities on the label sets is de-
pendent both upon the initial assignment of the proba-
hilities and upon the compatibility functions between la-
bels.

The relaxation process operates in this way until limiting
values are obtained for the label probabilities. A limiting
probability value of 1 denotes an unambiguous label and
a value of 0 denotes an impossible label. In some cases, the
limiting values may be strictly between 0 and 1, but we
have not been able to obtain a mathematical character-
ization of the cases in which this is true; for further dis-
cussion of this, and some examples {involving contradic-
tory initial evidence}, see [9].

IT1. LiNE AND CURVE ENHANCEMENT

In the following approach to line enhancement, a picture
iz considered to be an array of intensity values. This array
specifies a set of objects, the picture points, with the
standard 8-neighbor relations defined between them [10].
Associated with each picture point is a set of (K + 1) labels.
The first K labels A, Az, -+« ,Ag correspond to unit line

segments at orientations 8,8, - -+ 8k, respectively. The

final label Ay 4, corresponds to the case in which no line is
present. For the current implementation, K = 8 distinct
orientations were selected, with —r/2 < 8, < #/2. Since line
segments are undirected, orientations are symmetric
modulo 7.

The initial probability for each label is obtained by
evaluating the nonlinear detector (Rosenfeld [11]) at every
picture point in the eight orientations (Fig. 1). If the de-
téctor’s response is strong for only one orientation 8, then
the initial probability p{®(\.) is set to be high and the
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Tenplate:

A B C

D E F

G H I

(a}

B B B B
E E E HE
H H H

(1) (2} (3) (4]

£b)
Fig. 1.
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Conditiens:

B > A B > C
E - D E=F
H=0G H>1
H H
HEEB HE E E
B B B
(%} (6] (7} (8)

{a) Nonlinear line detecter for the vertical orientation. (Each letter denotes the average of a two-hy-two pixel block,)

When the conditions do not hold, the response is zero; when they do hold, the response iz (B+ E+ H) - WA+ D+ G

+ C+ F+ I). (b) Eight otientations of the detector.

probabilities on the other labels {p{" (X, ).q = k)} at that
position are set to be low. These low probabilities are not
set to 0, however, because the strong response could have
been caused by a noise point. If there is no strong response
from any of the detectors at some position, then the no-line
probability is set high. It is never set to 1, because the
picture point may be a gap in a curve. For the many in-
termediate situations, the probabilities should be dis-
tributed over all the labels,

To define this process more precisely, let u. (x.v) denote
the output of the detector with orientation 8, at position
(x,y). Let p(x,)(Ag) denote the probability of label A, at
(x,¥). Then the initial probabilities can be cbtained by
scaling the detector responses at each position (xg,y0).
These scaled responses must then be normalized so that
(1) is always satisfied:

8

max i, (X0,¥0) ool
nsl i 0a ¥ 3
P%%,\vol(hk} = g - ¥

8
max max g, (x,y) X pg(xo,30)
m=1 (x.¥}. g=1

k=128

]
max g, (Xg,30)
n=1

p}{;{}.yu}{’\‘a) =1-

max max o, (x,y)

m=1 {xy)
An additional small constant correction must also be ap-
plied {0 the above expressions to insure that no probability
is initially set to zero. Scaling the detector responses by the
maximum over the entire picture guarantees that the ini-
tial probabilities are assigned conservatively. This as-
sumes, in effect, that the strongest detector response is the
most reliable,

To update the probabilities, the compatibility relations
r:i(A\X’) between labels must be specified [see (3)]. Since
there are nine labels attached to each point, every pair of
points could require an associated 9 X 8 matrix of com-
patibilities. But, because of the symmetry inherent in lines

-

I

15 -. 25

Y .
_L [ _I

Fig. 2. Compatibility weights between line labels.

1 05

and curves, the compatibilities depend only on the relative
orientations of the neighboring segments. These compa-
tibilities can be specified in the following way. If two
neighboring line segments are oriented in the same direc-
tion or close to the same direction, they add support to one
another [condition 1) in Section 11}, If, on the other hand,
two neighboring segments are oriented perpendicularly
to one another, they subtract support [condition 3}]. All
other pairs of line segments are distributed between these
two extremes. Fig. 2 shows one such smooth distribution
of compatibility weights between pairs of line labels.

In the current implementation, the updating of the line
label probabhilities can be expedited by examining only a
portion of the neighborhood around each point. For ex-
ample, suppose that the label probability for a line segment
in direction 8 is beint updated. Then, in the 5 X 5 neigh-
horhood surrounding the given point, the positions which
enter the computation are those which lie approximately
in the directions 8, and —8;, {Fig. 3). The total contribution
from each point within this core of influence can be given
even more weight, if necessary, by changing the values of
the coefficients (d;;) in (3). For instance, to bias the process
in favor of straight lines, the contribution from points lying
directly on the orientation axis could be emphasized more
heavily than those just off axis.

To update the probability of the no-line label at a point,
all eight of its closest neighbors are examined. The no-line
Eabel is supported positively by adjacent probabilities for
no-line labels and negatively by adjacent probabilities for
line labels oriented toward the point. This latter condition
tends to suppress the no-line label at points which are ac-
tually small gaps in lines, and, in so doing, it indirectly
enhances the appropriate line label,
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X
X X
X X

Fig. 3.
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x\x
PE 4
o

The neighboring points X used for updating the probahility on

the label —. (For this orientation, twelve points are necessary.)

1dy

Fig. 4.

{a) Computer-generated line in noise. (b) Initial probability

assignmenis for (a3}, oblained from nonlinear line detector responses.
{e)-ig) lterations 1-4, and 8 of the relaxaticn process applied 1o (b},

All of the compatibility functions discussed in this sec-
tion were defined between pairs of labels attached to ad-
jacent pictorial positions. In Section V a new compatibility
function will be defined which relates a label probability
not to another single label probability, but rather to the
difference in probability between two iabels attached to
positions once removed from adjacency. This more com-
plex compatibility function will be used to prevent thick-
ening of the lines,

IV. EXPERIMENTS WITH SATELLITE IMAGERY

In order to evaluate the line enhancement process on a
meaningful sample set, satellite terrain images were se-
lected. Satellite imagery is rich in what geologists refer to
as linear features, e.g., rivers, roads, vegetation alignments,
and geological faults [14], These characteristics provide
& rich source of applications, as well as a commeon ground
for integrating this present study into earlier work (e.g.,
VanderBrug [15], Bajesy and Tavakoli [2], [3]).

However, before the more complex terrain results are
presented, a simpler example is given to illustrate the basic
operation of the process. In Fig. 4(a) a computer generated
line is embedded in random noise. Fig. 4(b) displays the
initial probability assignments obtained frem the non-

linear detector responses.! In this larger output format,
each position in the original image [Fig. 4(a)] corresponds
to a small square region. The line label (at each position}
that has the highest probability is displayed inside the
corresponding square with an intensity proportional to the
probability distributed on it.

For this picture the local detectors return significant
responses not only from positions on the visually distinct
line, but also from within the noise pattern (see Vander-
Brug [15] for a detailed discussion of the operation of
various line detectors on similar pictures). In addition, gaps
and other orientation anomalies exist in the maximal re-
sponses along the line. It is clear from this display that any
sequential tracking algorithm would have substantial
difficulty operating on these raw detector responses.

The rest of Fig. 4 shows eight iterations in the relaxation

-process. Only one long sequence of aligned segments is
enhanced. After enhancement, this sequence can be
tracked easily by standard algorithms [10]. Furthermore,
the probabhilities attached to the line segments (i.e., labels)
in this sequence are converging to 1, This indicates a high

1 The double response along the line is the result of local smoothing
{over 2 X 2 pixel neighborhoods) which preceds the line detection oper-
ation (see Fig. 1.
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Fig. 5.

tin

(a) LANDSAT subimape containing river. (h) Initial probability

assiglnments for (a). (c)—{p) [terations 1-5 of the relaxation process
applied to (a). (h}-(j} [terations 6-8 of the relaxation process applied

Lo (a).

level of confidence in them. The other labels which were
initially possible at these positions have become either
extremely unlikely or impossible.

In addition to the single long sequence in the final iter-
ation, there are several isolated clusters of line segments.
These clusters are a result of noise-based detector re-
sponses which occasionally align by chance. To eliminate
them, it becomes necessary to use a process with a more
global perspective than relaxation, such as a tracking al-
gorithm.

The compatibility coefficients of Fig. 2, which were used
for the straight line example, also work well for the curved
lines which oceur in terrain pictures. Fig. 5(a) shows a
winding river in a LANDSAT image of Kentucky. The rest
of Fig. 5 displays eight iterations of the relaxation process.
Note especially how the orientations become aligned
around the curves.

The robustness of the compatibility coefficients for both

the straight line example and the curved line example also
extends over more complex classes of pictures. This will
be shown using additional examples. This robustness can
be accounted for by considering the relaxation process not
as a single process over the nine labels, but rather as two
subprocesses in competition with one another. One sub-
process consists of all the line labels attempting to gather
support from their neighbors, and the other subprocess
consists of the no-ling labels attempting to gather support.
When the former subprocess dominates at a point, a line
label is placed there; when the latter subprocess dominates,
a no-line label is established. All of the mixed coefficients
(i.e., those between line pairs with different orientations,
or those between line/no-line pairs) enter into the com-
putations for both of these subprocesses. Thus, it is not
their specific values which are important but rather their
proportionality relationships.

In some specific applications, robustness may not be
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Fi%, 8. ({a)-( Tterations 1-5 and 8 of a modified relaxation process,
iased in favor of straight lines, applied to Fig. 4(a).

Fig. 7.

8]

{a)—{f) Iterations 1-5 and 8 of a modified relaxation process,

withoul noise cleaning capability, applied to Fig, 4(a).

desirable. In this event thé proportionality relationships
between the compatibilities must be changed dramatically
to favor the special circumstances. For example, to favor
only very straight lines, the coefficients of Fig. 2 might be
changed to the proportions (1.0, 0, —0.1, —0.17, —0.22).
This removes all of the intermediate positive support and
replaces it with zero or negative support. The result of
applying these new coefficients to the line in noise example
of Fig. 4(a) is shown in Fig. 6. Almost all of the smaller
clusters have been eliminated. For the remaining examples
in this paper, however, the standard proportions (Fig. 2)
are used.

The no-line/no-line compatibility plays a more crucial
role in line enhancement than the mixed compatibilities.
It regulates the no-line subprocess with respect to the line
subprocess, By reducing the no-line/no-line compatibility
to an ineffective level, all competition from the line sub-

process is removed. This enables every cluster of no-line
labels to be reinforced (Fig. 7). Increasing the compatibility
back to a functional level leads to more victories for the
no-line label and performs, in a practical sense, “noise
cleaning.” Appropriate values for this compatibility can
be selected from a rough estimate of pictorial noise;? it is
at about the same level of effectiveness for most of the
examples in this paper.

Another notable feature of the results in Fig. 7 is that the
lines have thickened extensively. Thickening occurs when
an incorrect line label, with a nonzero probabhility on it, is
supported by several strong labels in its immediate
neighborhood. Points bordering thick lines are especially
susceptible.

in Fig. 7 thickening occurred because every line lahel

2To see the negligible effect of small variations (approximately 15
percent} in this compatibility, compare Fig. 10(g} and (h}.
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line labeis with high proba-
bilzties

W label being updated

U

surrounds strong neiphboring
line labels which enter up-
dating computation

Fig. 8. Conditions for line thickening: (a} Points near thick line in nuisy
background. (b) Points in concavities of line of varying thickness.

f
1
f
}

iy (k)

*.
b
{
f.

Fig. 8. Neighbors () and (k) of a point (i} in the direction perpendicular
to a thick line used to detect thickening.

received only positive support—there was no competition
from the no-line subprocess. However, with the no-line/
no-line compatibility at a functioning level, thickening may
occur if the total positive support that a line label receives
from its line neighbors exceeds the total negative support
it receives from it no-line neighbors. Such circumstances
often arise for points bordering thick lines in noisy back-
ground [Fig. 8(a)] and for points lying in the concavities
formed by lines which vary in thickness [Fig. 8(b)}. In order
to counter this tendency, a thinning algorithim, developed
in the next section, has been incorporated into the relax-
ation process.

V. CURVES IRREGULAR IN THICKNESS AND IN
CONTRAST

Thickening occurs when a strong line or curve incor-
rectly dominates the points which border it. Suppose, for

example, that a point (i) borders a thick line in direction
8. One way to detect when thickening may occur at (i) is
to examine its neighbors () and (k) which lie on an axis
perpendicular to the thick line (Fig. 9). The point (j) lying
just inside the line should have a high probability on its line
label X4 in the direction 4, and the point (k) lying outside
should have a low probability on its Ag. In terms of the ac-
tual label probabilities, this translates into the condition
that the absolute difference

Djx(0) = |pj(A) — pa(M)]

is large, where (j) and (&) are the points neighboring (i) in
the directions 8 — x/2 and 8 + #/2, respectively.

This observation on the distribution of label probabili-
ties can be incorporated into the updating computation by
defining a compatibility coefficient r; p,, (As,As) between
pi(\g) and D; 5 (N). This compatibility should be such that
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Fig. 10. Enhancement of faint curves. {a) SKYLAB subimage con-
taining concrete and asphalt roads. (b} Initial probability assignments
for {a). {c} *Pzeudo-complement” of (b} to emphasize the low proba-
bilities (dark lines). (d}—(g) [terations &, 2, 4, 6, and 7 of a modified
relaxation process, |nc0rp0rat|ng Lhmmng capahlllty applied to (a).
{h} Iteration number 7 for a relaxation process, like that in Fig.
10{d)-{g}h, but with the no-line/no-line compatibility increased 15

percent.

Fig. 11.

{a} LANDSAT image containing many lines (geclogical linear

features). (b)-{g) lterations 0, 1, 2, 3, 5, and 7 of the same process used

in Fig. 10, applied to (a).

D;x(Ng) contributes negatively to the computation of
Pi(Ag). When the difference D; , (1) is large, the label Aq
at (i) is weakened, and the tendency for lines to thicken is
countered.

For the last two examples (Figs. 10 and 11) in this paper,
thinning was in operation during the relaxation process.
These figures contain many places where thickening could
be a problem, because the lines and curves vary a great deal
in width. Note, however, that the effect of thickening is
minimal (also compare Fig. 12 with Fig. 11{g) to see the
result of eliminating the thinning step).

Fig. 10 illustrates another property of lines in real world
imagery—variability in intensity. Fig. 10(a) is a Skylab
photograph of a suburban area in Maryland. It contains
a road (traveling from the lower left to the upper right)
whose composition changes from concrete to asphalt. The
accompanying change in reflectivity for this road makes
the upper portion almost indistinguishable from the
background. Also there is a dim section in the lower, left-

hand portion. Both of these sections, especially the upper
continuatien, are very difficult to find using traditional
techniques such as thresholding [10]. Relaxation, however,
performs very noticeable enhancement: it eliminates the
intensity changes, and it makes the continuation through
the upper right-hand corner much more prominent.

VI, INTERACTIONS BETWEEN CURVES

All the examples that have been discussed so far have
focused on pictures which contain only a few long lines and
curves. If a picture contains many lines and curves, there
is a possibility that these may lie close enough together to
influence each other unduly. Since the size of the effective
context around each picture point grows with the number
of iterations, it would seem increasingly likely, during re-
laxation, that this interaction would occur. As it happens,
however, the lines and curves do maintain their autono-
my.
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Fig. 12, The seventh iteration of the same process as that in Fig. 11,
except without thinning.

For example, one type of competitive interation between
two lines occurs at a junction where they cross (see Fig. 10).
Both lines exert enough influence over the junction so that
segments oriented in both directions survive. The problem
of determining which line should dominate at the inter-
section is resolved by preserving both. This resuit is con-
sistent with the ambiguity inherent in such situations.

A more extreme example is shown in Fig. 11. The
abundance of lines remain clearly distinct, interacting only
at the junction and crossover points. The correct resolution
of the distinct lines can be attributed to the strong ne-line
labels separating them. These no-line intermediates,
strengthened further by thinning, effectively stop the cross
influences from propagating.

VII. CONCLUSIONS

For relaxation labeling processes, the final distribution
of probabilities on the [abel sets is dependent both upon
the initial probabilities and upon the compatibility func-
tions (see Section II). Such processes are appropriate for
line enhancement because the knowledge they require can
be represented in terms of compatibilities (or constraints)
between the possible line segments. The examples in this
paper demonstrate that, for line enhancement, a reason-
able set of compatibilities is both readily obtainable and
applicable to many different tvpes of pictures. Moreover,
since lines are often strongly determined by their pictorial
context, it appears that the initial probahility distributions
need to be only rough estimates. As the initial estimates
become more accurate, the convergence of probabilities
seems to require fewer iterations. However, the minimum
number of iterations is determined largely by “worst case”
detector responses, i.e., by the largest contexts required
to interpret the most ambiguous responses properly.

For most of the examples studied, eight iterations were
sufficient for overall enhancement. This implies that the
distance over which influences must propagate in order to
enhance a label at a given position is rathér small, although
it is larger than just the immediate neighborheod of each
point. Allowing the process to continue for large numbers
of iterations often produced the undesirable result of
thickening existing lines near junctions.

One previous study did suggest iterating a local operator
to enhance the output of line detectors (Rosenfeld et al.
[11]). However, that suggestion was based on the obser-
vation that the output of line detectors applied over a
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picture should itself be line-like, Thus, finding the lines
in this new feature picture (using local line detectors)
would have the effect of enhancing the lines in the original
picture. Unlike relaxation, this approach did not fully re-
alize the utility of local coniext for line enhancement.?

Relaxation labeling is controlled by the algorithm for
updating the label probabilities. For the line enhancement
application, a simple algebraic summation over all neigh-
hors was used at first. However, in order to provide thin-
ning, it was necessary to extend this to include (difference)
relationships aver some of the neighboring label sets. Thus,
in an elementary way, some of the structural information
contained in the distribution of the labels over the neigh-
borhood was used.

By incorporating conditional expressions into the
updating algerithm, more of this information could be
used. This would allow the process to become increasingly
sensitive to the relations between labeled objects in their
contextual neighborhoods. Biases for various structural
combinations, e.g., Y-branches, could be introduced in this
way, and simple dependence on numerical values reduced
even further.
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versus 5646 for the optimal algorithm. Hence, for the larger variable
problems, the suboptimal lookahead scheme with smaller values of [ is

more efficient than the optimal algorithm and yields more optimal sub-
sets than backward sequential selection.

(¢)

Correction to “An Application of Relaxation Labeling to
Line and Curve Enhancement”

STEVEN W. ZUCKER, ROBERT A. HUMMEL, AND
AZRIEL ROSENFELD

In the above paper! Figs. 4-7, and 10-12 were inadvertently misrep-
resented. They are correctly displaved here.

Manuseript received June 8, 1977,
S. W. Zucker was with the Computer Science Center, University of Marvland,

College Park, MID 20742. He is now with the Department of Electrical Engineering,
MeGill University, Montreal, P.Q., Canada.

R. A. Hummel and A. Rosenfeld are with the Computer Science Center, Uni-
versity of Maryland, College Park, MD 20742,

(d)

Fig. 4. (a) Computer-generated line in noise. (b) Initial probability assignments
1S, W. Zucker, R. A. Hummel, and A, Rosenfeld, [EEE Trans. Comput., vol, for (a}, obtained from nonlinear line detector responses. (¢)-(g) Iterations 1-4,
C-26, pp. 394403, Apr. 1977,

and 8 of the relaxation process applied to (b).
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(e) (f)

(&)

Fig. 4. (Continued.)

) (c)

Fig.5. (a) LANDSAT subimage containing river. (h) Initial probability assignments for (a). (¢)-(g) lterations 1-5 of the relaxation process
applied to (a). (h)-{j} Iterations 6-8 of the relaxation process applied to (a).



(d)

(h)
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(e)

(i)

Fig. 5. (Continued.)
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()

Fig. 5. (Continued.)

(b)

(a)
ich id)

Fig. 6, {a)-(f] Iterations 1-5 and 8 of a modified relaxation process, biased in favor of straight lines, applied to Fig. 4(a).
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(e}
Fig. 6. (Continued.)

lal

(e} (d)

Fig. 7. {al-if) [terations 1-5 and § of a modified relaxation process, without noise cleaning capability, applied to Fig. 4(a).
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Fig. 7. (Continued.)

(el

(d)

le)
Fig. 10. Enhancement of faint curves, (a) SKYLAB subimage containing concrete and asphalt roads. (b} Initial probability assignments
for (a). (¢) “Pseudo-complement” of (b) to emphasize the low probabilities (dark lines). (d)-(g) Iterations (0, 2, 4, 6, and 7 of a modified

relaxation process, incorporating thinning capability, applied to (a). (h) Iteration number 7 for a relaxation process, like that in Fig. 10(d}-{g),
hut with the no-line/no-line compatibility increased 15 percent.
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thi
Fig. 10. (Continued.)

(b} (c)

Fig. 11.  ia) LANDSAT image containing many lines (geological linear features). (bi-ig) lterations U, 1, 2, 3, 5, and 7 of the same process
used in Fig. 10, applied to (a).
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(d) (el

Fig. 11. {(Continued.)

Fig. 12.  The seventh iteration of the same process as that in Fig. 11, except without thinning.



