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We will confine ourselves to the prob-
lem of reco gnrzing dot patterns embed-
ded in a scene after they have under-
gone translation, rotation, and scale
changes. Each dot can represent a fea-
ture location extracted from an image.
In a more general vision system, we
would like to reco gntze patterns of lines,
corners, and other features, attached to
three-dimensional objects, undergoing
rigid 3D transformations and perspec-

tively projected onto an image plane.
Conceptually, the geometric hashing
algorithms will extend to such cases.

But many implementation issues must
be addressed, and the transformation
classes of the features will be more com-
plicated. In particular, the coordinates of
the points in our study are represented
by two-dimensional entities. More com-
plex features will involve more dimen-
sions and more complex transformations.

In our study, we use patterns of 16 points;
models involving more complex features
will need to be described by a similarly
small number of primitives.

As implemented, the algorithms rec-
ognize models consisting of patterns of
points embedded in scenes, indepen-
dent of translation, rotation, and scale
changes. Thousands of models may be
used, each containing approximately 1.6

points, with scenes consisting of hun-

Geometric hashirg for point matching

Suppose we want to recognize pat-
terns of points that may be translated,
but for the moment, we assume no ro-
tation, scaling, or other transforma-
tions. The model in Figure A consists
of five dots. Suppose that we place dot
1 at the origin of a coordinate system.
Then the other dots lie at four different
(x, y) locations. Let's record in a quan-
lized hash table, in each of the four
bins where this information lands, the
fact that model M, with basis point 1

yields an entry. Figure A shows this
graphically, viewing only entries of the

form (M,, 1). Similarly, the hash table con-
tains four entries of the form (M.,2), four
entries of the form (Mr,3), and so on.
Each entry is generated by placing the
base point at the origin of the hash table
and observing where the other points of
the model land. The same process is re-
peated for each model. Of course, hash
bins may receive more than one entry. As
a result, the final hash table contains a list
of entries of the form (model, base point)
in each bin.

ln the recognition phase, a single point
from the scene is chosen as a candidate

basis point. The coordinates of all oth-
er points are then calculated with this
point placed at the origin. Each re-
maining point is mapped to the hash
table, and all entries in the corre-
sponding bin receive a vote. lf there
are sufficient votes for one or more
(model, basepoint) combinations, then
a subsequent stage attempts to verify
the presence of a model with the des-
ignated point located at the chosen
basis point. lf points are missing from
the scene because they are obscured,
recognltion is still possible, as long as
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Figure A. Model M, consisting of five points and all resulting hash table entries.

COMPUTE,R



dreds of points. Most of thescenepoints sor CM-2 would be roughly 70 millisec- bases. We assume that our database

are spurious noise points, and points onds per probe with a single basis set. contains M models; each model z has

points lie on the embedded object. How- COnneCtiOniSt algOfithm
ever, multiple pairs can be probed at the
same time, and many heuristics exist for
choosing likely basis pairs. With 7,024 The first parallel algorithm is data
models and scenes consisting of 200 parallel over the hash-table bin entries
points, execution time on a64K-proces- and scene points, but serial over the

may be obscured or misplaced. The sys-

tem searches over pairs of scene points
and obtains recognition as soon as both

there is a sufficient number of points
hashing to the correct bins. The list of en-
tries in each bin may be large, but be-
cause there are many possible models
and basis sets, the likelihood that a single
model and single basis set will receive
multiple votes is quite small, unless a

configuration of transformed points coin-
cides with a model. ln general, we do not
expect the voting scheme to give only one
candidate solution (see Lamdan and Wolf-
sons). The goal of the voting scheme is to
reduce significantly the number of candi-
dates for the verification step.

The case where the dot patterns can
also undergo rotation and translation is

treated analogously, Two points are now
needed to define a basis, and point loca-
tions are measured relative to a coordi-
nate system defined by the pair of points.
When we place the basis midpoint at the

Geometric hashitg

Each of the remaining points is again
mapped to the hash table; all entries in

the corresponding bin receive a vote;
and we continue as before. lf the dot
pattern is also allowed to undergo
scale changes, we use the length of
the selected basis as the length of the
unit vector of the coordinate system.

For the algorithm to be successful, it
is sufficient to select as a basis tuple
any pair of points belonging to some
model. lt is not necessary to hypothe-
size which model nor which model
points are the corresponding points,

since all models and basis pairs are
redundantly stored within the hash ta-
ble. Classification or perceptual group-
ing of features can be used to make
the search over scene features more
efficient, for example, by making use
of only special basis pairs.

an associated set, 5,, = {(r*, k, !*, o)lt=r,
containing the coordinate pairs of the
mth model's n points.

Preprocessing. For the preprocessing
phase, where the hash table is created
from the model set, the algorithm has

time complexity @ (M log n) if Mn3
processors ate used on a concurrent-
read exclusive-write SIMD Hypercube.
We iterate sequentially over the M
models. Initially, each of the lorv-order
n processors contains the (*,y) coordi-
nates of one of the n potnts in ,S- for the
mthmodel. The set (S- x,S,,) X S,,, is then
computed using the triple-product al-
gorithm (see the sidebar, "Building-
block algorithms,"on the next page).
Each of the first n3 pracessors of set Vt
now contains a triplet: l(*,, y7, (xp !),
(ru, y)l . (S- x S-) x S-. The first two
points of each triplet define an ordered
basis and thus a coordinate system. Ac-
cordingly, each processor with a rea-
sonable basis pair and a distinct third
point can compute the coordinates of
the third point of the triplet relative to
that coordinate system. (Note that sorne
processors will be turned off at this
point.) These coordinates can then be
converted to a hash bin number. This
phase is completed once each such pro-
cessor communicates its information to
the appropriate hash bin.

To efficiently communicate model and
basis-point information to the hash bins,
the algorithm performs two passes
through the models. In the first pass, it
counts the number of entries that will
occur in each hash bin. Each processor
with an entry destined for a hash bin
sends an additive write with increment
1 to an accumulator in that bin. By
performing a parallel prefix sum of the
resulting counts, the processor pool can
be organized into a one-dimensional
affay so that each hash bin occupies a

contiguous block of (virtual) proces-
sors and the block length equals the
number of expected entries. Further, a
map gives the index of the head proces-
sor for each block of processors repre-
senting a hash bin.

In the second pass, we again iterate
sequentially over the models. This time,
for each processor that computes a hash
table entry, the information is sent to
the appropriate processor in the hash
table group. The location of the appro-
priate processor can be maintained by

center of a coordi-
nate system (see
Figure B), the re-
maining points of
model M, land in

three locations. A
quantized hash ta-
ble will now record,
in each of the three
bins where the dots
land, the fact that
(in this case) model
M, with basis (4,5)
yields an entry in
this bin. During rec-
ognition, two points
from the scene are
chosen as the ba-
sis. The coordi-
nates of the other
scene points are
calculated relative
to the coordinate
system defined by
the basis pair.
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Figure B. Coordinate system for normalizing models us-
ing two-point bases.
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Certain building-block algorithms are
fundamental to the programming of a
hypercube-based SIMD architecture.
We will need the following components.

Triple product. Given three finite
sets A -- {a,}lr=r, B = {bi}tf=,, and c =

{cn\-,f=r, the triple prod uct A x B x C
is all the ordered triplets

r( i:,i:,, k=1
to compute the triple prod-

uct is to perform an outer product
twice. An outer product for the Con-
nection Machine is succinctly de-
scribed in Little, Blelloch, and Cass.6
An extension of the method leads to a
direct triple product computation,
which we now describe.

Using standard gray-code embed-
ding algorithms, we configure the
hypercube as a three-dimensional ar-
ray of size L,x Lrx L.. (We assume,
purely for convenience, that the L, are
powers of 2.) The processors are in-
dexed by their coordinates (i, j, k), and
initially data element a, is contained
in processor (i, 0, 0), b,in processor
(0, j,0), and cuin processor (0, 0, k).

The algorithm has two phases. Dur-
ing the first phase, the a, data is

spread along a row in the direction of
Ihe y axis, the b, data is spread in the
direction of lhe z axis, and the cu data
is spread in the direction of the x axis
(see Figure C). ln the second phase,
the data on each plane is spread into
the entire cube, first spreading the
data on the (x, y) plane along lhe z
axis, then the data on the (y, z) plane
along the x axis, and finally the data
on the (x, z) plane along the y axis.
Upon completion, processor (i, j, k) will
have received datuffi aifrom (i, j,0),

datum b,f rom processor (0, j, k), and
datum c*f rom processor (i, 0, k) and thus
has the triple product element (a,, bi, c).

The operation of spreading data along a

single axis that occurs during both phases
can clearly be performed in O (L,) time,
since nearest neighbors are adjacent in

the hypercube, but can in fact be complet-
ed in O (log Li) time. This is because we
may use a recursive doubling scheme to
spread the data rapidly along the axis.
(Algorithms of this kind are described by
Hillis and Steele.t) In the parlance of the
Connection Machine's Paris language, the
operation is a scan_with_copy. Power-of-
two communication along each axis is
provided by O (1) communication cycles
due to the gray-code embedding. Specifi-
cally, it g(i), i = 0, 1, ..., n - 1, is a gray
code (n a power of 2), then it can be
shown that g(i) and g((i + 2n) mod n) dif-
fer in at most two bits, and thus can be
connected by two communication cycles
on a hypercube.This is true for any value
of k.

Histogramming. Given a collection of
data {a,}'l=,, such that each a, is an ele-
ment of a finite collection of possible val-
ues, say ai € {1 , 2 V}, the histogram
is a count of the number of elements
equal to each possible output value, that
is, H(k) = # {i I a,= 1a1.

Little, Blelloch, and Cass6 describe
three approaches to histogramming: se-
quential iteration through the value set,
additive writes, and sorting. Let us consid-
er the sorting method in more detail.

We first sort the data so that a,,,,, forms
a nondecreasing sequence. For example,
the Batcher bitonic sort algorithm8 oper-
ates on a hypercube machine in O(log2 N)
time. After sorting, each processor can

Building-block algorithms
determine if the data in the processor to
its left is different. lf so, it marks it-
self as the head of a constant-data
block. Since each processor needs to
be able to communicate with its neigh-
boring processor for this step, the pro-
cessors should be configured as a
one-dimensional array embedded in

the hypercube, using a gray-code em-
bedding (the Batcher sort process is

still efficient in this configuration).
Next, each head processor counts the
number of processors in its constant-
data block by means of a segmented
parallel prefix sum. Finally, each head
processor sends the lnformation about
the cardinality of its block to the appro-
priate histogram bin, an,,l. Since the
destinations of the messages are dis-
tinct and ordered relative to the source
indices, these messages can be sent
using an O(log N+ log V) contention-
free algorithm of the sort described by
Nassimi and Sahni.s The total com-
plexity of histogramming by sorting is

thus O(log2 N + log V).
For our purposes, the histoEram

vector is not needed; rather, we only
need knowledge of the few maximum-
vote-getting values. To this end, the
final stage of sending messages can
be omitted, and the maximum counts
among the marked processors can be
determined and relayed to the front
end. Thus, the process of f inding the
few maximum histogram bins can be
accomplished in O (log' N) time.

Further, we can do better than the
Batcher sorting algorithm. Lin and Ku-
mar10 provide a hypercube-based radix
sort algorithm; in the sidebar entitled
"Simple radix sort on a hypercube," we
outline a simpler method that also has
time complexity O (log Vx log N).

(a,, b,, cn)

a,tl

x

Figure C. The two stages of the parallel triple product computation.
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lnterest points (= 200) Data

VP set V1

Xy Yt Xt, Yk XS, YS

BB
Disable the two PEs where
(x, y) = (Xi, yi), (x', y') = (x,, y1).

Compute hash bin index hi.

Stage 1
Host broadcasts B B
selected basis
B = {(x, y), (x', y')}

hrJ hx ht *, h
D̂

Active PEs send nnessages to
the hash table bins saying
"You receive one vote."

VP set t/2
Stage 2

Send number of votes to
head PE of proper group
of entries.

VP set t/3

Stage 3

Spread number of votes to
all the members within
a group.

Histogram the entries of
all PEs in V, that
received a message.

VP set 74

Model :l Basis:1 Model : M Basis : n(n - 1)

Recover winning combination.

Figure 1. Recognition phase of the parallel geometric hashing connectionist algorithm. Note how tokens flow from one
set via connections to the next set.

incrementing the map entry pointing to
the head of the corresponding hash bin's
block. Collisions can occur if more than
one processor wishes to append to a
single hash bin's list. By using a SIMD
version of a parallel fetch-and-add in-
struction, each processor requestrng a
destination virtual processor in a hash
table bin is assured a distinct address
while indivisibly (and concurrently) in-
crementing the counter pointing to the
next empty location of the block.

The hash table is now contained in
two data structures. The first structure,
one processor for each hash btn h, con-
tains pointers to a head processor Z, of
the block of entries in the second data
structure. The se cond data structure
consists of at most Mn(n-I)("-z) hash
bin entries of the form (m, i, j).

February 7992

Recognition. In Figure 1, a schematic
diagram of the recognition phase, we
use the virtual processor set (VP set)
concept found in Connection Machine
literature" A VP set is simply an ab-
stract finite set that will be mapped to
virtual processors. The VP sets in the
recognition phase are the feature coor-
dinate set 7, and the hash table sets I/,
and %. We assume that a set of ,.S inter-
est points have been extracted from the
scene and that each coordinate pair re-
sides in the local memory of one of the
S processors of the VP set I/,. For the
hash table, VP setVrcontains the point-
ers to the heads of the blocks of entries,
and % is the one-dimensional array of
concatenated lists of hash entries.

In the first stage, the front end selects
a basis pair in the scene and broadcasts

the pair's coordinates to the S proces-
sors of Vr. Each processor in V, com-
bines the coordinates of its interest point
with the broadcast pair to compute the
index of a hash bin. In the second stage,
messages saying "you receive one vote"
are sent by the processors of V, to the
appropriate processors in Vr. The mes-
sages are sent using additive writes and
general routing; multiple votes destined
for the same recipient processor com-
bine in the routers. In the last stage,
every Vrprocessor h that received one
or more messages relays the number of
votes it received to the block of proces-
sors T h through T r*, 1 of V3 This
operation can be done, for example,
using a modified version of Nassimi and
Sahni's Generalize algorithm.e Alter-
natively, every Vr.processor h can send

3l



Simple radix sort on a hypercube
Assume that the values in the sequence to be softed, {a}l=r,

are represented in binary bitform, and let {bn,}f=., be the se-
guence of the kth-f rom-the-right bits. We sort the values in a
stable fashion.

For k beginning at zero, and successively increasing to
log V - 1, we do the following:

. Mark all processors with bx,i= O.

. Rank these processors: Each marked processor deter-
mines its relative position among all marked processors us-
ing a parallel prefix sum (Nassimi and Sahnie describe a
Rank algorithm). Let 4 be the rank of a processor if it is
marked and f be the maxim um ri.

. Mark all processors with bn,i = 1.

. Rank these processors as well; let s, be the rank of the
ith such processor.

. Move the a, data: Every processor with bx,i= 1 sends its
data a,lo processor t + s,, while every processor with bx,i= 0
sends its data to processor r,. Because the paths of com-
munication are ordered, this routing can be completed in

O (log N) time, using the Concentrate and Distribute algo-
rithms from Nassimi and Sahni.e

After the first iteration, all
spect to their low-order bit.

{a,}l=., will be sorted.

items are stably sorted with re-
Upon termination, the sequence

a message containing the number of
votes (which might be zero) to proces-
sor Th in V, Using a parallel prefix
computation with "copy from the left"
as the binary associative operator, pro-
cessor T, can then spread the count to
the remaining members of its group.

At this point, we want to histogram
the entries of the processors in set V3

using the multiplicities determined in
the previous step. Efficient histogram-
ming methods should be utilized; in
particular, the radix sort algorithm (see

sidebar above) offers advantages. In our
current implementation, purely for ease

of coding, we use additive writes in-
stead. Consequently, a fourth VP set,
the histogram bin set Vo, is required.
Each processor of Vois associated with
one histogram bin representing a triplet
(m, i, j). The processors of. V, vote for
their (m, i,-l) entries by sending an addi-
tive write message to the appropriate
histogram bin. The increment in these

messages is the value of the votes they
received in the algorithm's third stage.

The additive writes combine in the rout-
ers, resulting in histogram counts in the
Mn(n - 1) histogram bins. Lastly, a glo-
bal-max operation (or a thresholding)
of the vote tallies over the processors of
the set Vorecovers the winning (*, i, j)
combinations. These combinations are

communicated to the front end to verify
the existence of matching models.

For the time complexity of the recog-
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nition phase, we assume that Mn3 pro-
cessors are available and that the num-
ber of hash table bins is less than or
equal to Mn3. The time complexity of
the recognition phase, per broadcast
basis pafi, is dominated by the histo-
gramming step. In fact, the time com-
plexity of the remaining operations of
the recognition phase is no worse than
O(log(Mn')), which is the same as

O(log( M")). The complexity of histo-
gramming depends on the particular
method. Using Batcher's bitonic sorte
for histogramming, the time complexity
of the recognition phase is O (log2 (S Mn)) .,

where S is the number of feature points.
Using the radix sort algorithm lowers it
to o(log(SM n) lo g(M 

")) 
.

Hash-location
broadcast algorithm

The above algorithm approaches geo-
metric hashing as a connectionist pro-
cess, with information flowing via pat-
terns of communication. Our second
algorithm uses the Connection Machine
as an intelligent memory source and is

inspired by the inverse indexing meth-
od of data retrieval.

Hash-table data structure. The hash

table is organized differently in this al-
gorithm. The data canbe regarded as a

collection of records of the form (m, i, j,
k, x,y), where (x,y) is the hash location
that point k maps to under basis (i, j) in
model m.The information can be stored
in a multidimensional table indexed by
(*, i, j , k), where i, j,, and k are integers
between 1 and n. Not all of the Mn3
affay locations will be used. Locations
where point k occurs in the basis (l, 7)
will be empty, and all bins correspond-
ing to poor basis combinations (a basis
with two very close points) will also be
empty. The (m, i, j, k) information in
each record can be recovered frorn the
self-index of the entry location in the
affay, although we found it convenient
to store the data explicitly along with
the (x, y) values.

Preprocessing. The construction of
the hash table is a simplification of the
previous algorithm's preprocessing
phase. After loading the model point
data into the appropriate processors, M
simultaneous triple products of S*x S*
X S. are computed for m - 1,,2, ..., M tn
O(log n) time. This forms the four-
dimensional affay. Then every location
that can compute a reasonable hash lo-
cation computes the corresponding
(x, y) value and stores the information
locally.

Recognition. Figure 2 shows a sche-
matic diagram of the recognition phase.

The VP set Ytcontaino thsf.sature coor-

101 010 110 000 011 010

010 110 000 010 101 011

I nput

Key: LSB

Key: MSB

Output

\
000 101 010 110 010

//
000 010 010 011 101 110

I
011

Figure D. Radix sort.
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dinate set, obtained from the S interest
points (S is typically 200) thathave been
extracted from the scene, and V, con-
tains the four-dimensional hash-table
data structure preloaded into the mem-
ory.

We operate sequentially through the
basis sets and the scene points. First, the
front end selects a basis pair in the scene
and broadcasts the coordinates of the
points in the patr to the S processors of
Izr. The two processors whose interest
points form the selected basis do not
participate in the coordinate computa-
tion; the remaining .S 2 processors
then compute the hrash location of the
locally stored scene point in the coordi-
nate frame of the broadcast basis. These
operations involve minim al datamove-
ment and thus are extremely fast.

In the second stage, the data from the
S - 2 processors in V, are successively
broadcast to all processors of set V2.

Each broadcast coordinate has the form
(u,r) and gives a hrash table location
where a vote should be tallied. Each
processor in Vr, tnde,xed by (*, i, j, k),
contains a hash locartion (*, y), which
the processor can compa te agatnst (u,v) .

If the two locations are sufficiently close,
table locatio n (m, i, j , k) records a hit
indicating a vote for mo del m and basis
(i, j). (A.t extremely useful modifica-
tion to geometric hashing permits
weighted voting for model-basis pairs
according to the relative proximity of
(u,r) to (x, y).) The vote tallying contin-
ues by accumulating hits in each hash
table location for each of the S 2
points in the image.

When the tallying is complete, a third
stage uses a segmented, parallel, tree-
based sum operation to add the votes
over k among locations (*, i, j, k). The
result is the total number of votes that
model m with basis (i, j) obtains for the
given scene and basis selection. Finally,
a global-max or thresholding operation
among the processors with locations
holding the sum of votes determines the
winning model/basis combinations. A
final verification step determines the
quality of each match.

Strictly speaking, each of the S - 2
broadcasts will require O(log( Mrt))
time, since there are Mn3 processors in
the V, data set. However, the theoreti-
cal complexity can be decreased, at the

expense of requiring ,S storage locations
in each processor, assuming that S
Mn3. Assuming for simplicity that ,S =
n2, all S 2 broadcasts can be done
simultaneously by having each proces-
sor in I/, send its data to a unique pro-
cessor tn a two-dimension aI (n x n) slice
of the four-dimensional data set Vr. This
routing can be completed in time
O(log(n')). This slice of data can then
be spread to the rest of Vr, rn parallel
slices, requiring no more than O(log
Mn) time.

Observe that at this point the entire
set of the computed coordinate pairs is
distributed among the n2 processors of a
slice, one coordinate pair per processor.
The processors within a slice can now
exchange their data so that the entire
list of computed coordinate pairs be-
comes available to each of them. This
can be achieved simply by a recursive
doubling procedure that communicates
data between pairs of processors and
forms lists of coordinate pairs. Note
that the entries of those lists will not
appear in the same order in each pro-
cessor. This recursive doubling proce-
dure can be completed in O(S) time.

lnterest points (= 200)
Data

Stage 1
VP set l/1

Host broadc;asts
selected barsis
B = {(x , y), r(x' , y')}

->BB

Disable the two PEs where (x, y) _ (xi, yi)
or (x', y') = (xp y).
Compute relative coordinates.

uk,vk US'VS

Each PE in turn broadcasts its local
coordinate pair to the entire table.
Each table PE compares its local entry
against the broadcast coordinate pair
incrementing a local counter according
to the outcome.

Compute the votes each model/basis
combination receives.

Determine the winning combination.

Stage 2

l

VP set

Figure 2. Recognition phase for the hash-location broadcast algorithm.
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Figure 3. Hash table equalization for similarity transformations. The model points have a Gaussian distribution over R2

Shown at left, the hash table before equalizationi at right, the hash table after equalization.

The time complexity of the entire
recognition phase is dominated by the
second stage. Indeed, the time com-
plexity of the first stage is O(log S). The
second stage, using the data-spreading
trick just described, results in time com-
plexity no worse than O(S + log(Mn)),
which is also the complexity of the rec-
ognition phase.

Implementation on a
Connection Machine

Implementing carefully crafted par-
allel algorithms on existing architectures
frequently involves more compromises
than one might expect. In our case, our
algorithms have assumed the existence
of Mn3 processors, which f-or M - I,024
and n = 16 would entail a 4-million-
processor machine. Although there are

64K-processor Connection Machines, it
is more usual to have access to a 32K- ot
16K-processor model and to do proto-
typing on an SK-processor model. We
can use Connection Machine software
facilities to simulate a larger parallel
machine by mapping multiple virtual
processors to each physical processor,
which then execute in round-robin fash-
ion. However, the virtual processor ra-
tio (VPR) would then equal 5I2 on an

8K-processor model, which incurs an
impractical amount of overhead. Ac-
cordingly, we must modify the algo-
rithms somewhat and employ other ef-
ficiencies.

Hashing connectionist algorithm.
Rather than give each hash table entry
a separate processor, we can store the

40

entire list of entries for a hash bin in a
single processor's local memory. The
lengths of the lists will vary over the
hash table, but the required number of
processors drops to the number of de-
sired hash bins. The preprocessing phase

of creating the hash table becomes far
less efficient, due to the processor's need
to randomly access local memory as

entries are appended to the lists. Fur-
ther, collision contention becomes more
delicate. But, provided no single list
becomes exorbitantly long, memory re-
quirements are not a problem.

For the recognition phase, the entries
in the hash bins that receive votes must
be histogramed (that is, counted) with
the multiplicity of the number of votes
that each hash bin receives. For 7,024
models having 16 points each, the en-
tries consist of 18-bit codes (10 bits for
the model number, and 4 bits for each of
the two basis points). Rather than histo-
gramming by sorting, we opt for a mes-
sage-passing strategy. We set up 218 -
256K buckets (which requires a virtual
processor ratio of 32 on the SK-proces-
sor machine), one bucket for each
(*, i, j) combination. Each hash bin that
receives one or more votes from the
scene points then synchronously walks
down its list of eritries, sending messag-
es to the corresponding (m, i,7) buckets.
On the SK-processor machine, each hash

bin has, or the average,420 entries in its
list. The time needed for list traversal is
clearly dominated by the longest list.
This process currently accounts for 99
percent of recognition-phase execution
time, and it uses the parallel architec-
ture less efficiently than the radix-sort
approach to histogramming.

To make the process as efficient as

possible, we suggest two enhancements.
First, it is clearly desirable to keep the
lists of entries as even as possible over
the hash bins. By employing a rehashing
function2 we can effectively requantrze
the hash table such that the expected
density of list lengths becomes uniform.ll
Figure 3 plots the hash bin occupancies
before and after requantizatron for a

typical database of models.
Second, we can use certain symme-

tries in the hash table; in particular, if an

entry of the form (*, i,7) hashes to a

location (*, y), then there will be an

entry (*,, j,i) in location (-x, -y).Thus,
when calculating a point's hash loca-
tion, we can remap points from the low-
er half plane to the upper half plane,
and either confuse entries of the form
(m, i,7) and (m, j,l) (which could cause
some degradation in discriminability)
or mark such remapped hashings as

"basis-inverted. " Accordingly, only half
the hash table is required, and the entry
lists become, on the average, half as

long when spread over the existing pro-
cessor set.

Hash-location broadcast algorithm.
To reduce the virtual processor ratio in
the second algorithm's implementation,
we assign one processor to each index
(*, i,7) and store the n entries associat-
ed with k = 1,,2, ..., n in its local memory.
The computed hash location for each of
the S scene points is broadcast to all
processors, and each processor com-
pares the location with the n locations
stored in its local memory. Thus , Sncom-
parisons are needed (per basis probe).

Efficiencies can be achieved by the
symmetries mentioned above. Each of
the entries (*, i, j , k, x, y) is mirrored by
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an entry of the for m (m, j , i, k, -x , -y) , so
by comparing a broadcast locatio n (u,v),
where v < 0, with (-x, -y) instead of (x,
y), we can omit half of the hash table
entries. Further, through additional pre-
processing of the local hash table en-
tries, and by broadcasting the S points
in an appropriate order, processors can
use a two-dimensional version of list
merging and avoid looking through the
entire lists. This enhancement, which
requires nonuniform random access to
local processor memory (supported in a
limited fashion on the Connection Ma-
chine), reduces the theoretical complex-
ity to O(S + n) but does incur other
overhead.

Languages. Although a number of
special-purpose parallel languages have
been developed for the Connection
Machine, we found C code running on
the front end, enhanced with system
calls to the Connection Machine using
its Paris pack age, the most suitable for
our needs. The Paris package includes
many of the building-block and routing
algorithms that we have mentioned;thus,
it gives us the greatest level of control
over the machine. For the broadcast-
based algorithm, just about any lan-
guage would suffice, and the Paris prim-
itives represent a fast development path.

Performance results

We generate models (dot patterns) of
16 points each, using either a uniform
distribution over a region or a Gaussian
distribution. After generating I,024
models, we construct scenes of approx-
imateiy 200 points, such as those shown
in Figure 4. A single model is embedded
in the scene, translated, rotated, and
scaled. Noise is added to the scene points
through quan ttzatron round-off error.

In both implementations, the front
end randomly selects a pair of scene
points (a probe) as the basis for possible
recognition. A connectionist algorithm
probe takes I.52 seconds on an SK-pro-
cessor machine, which drops to 0.24 sec-
onds on a 3zKmachine, using rehashing
but not the symmetries described in the
preceding section. If the symmetries
were used, the probe time would drop
accordingly. The plots in Figure 5 show
the connectionist algorithm operating
in a roughly linear regime - that is, we
are achieving linear speedup due to the
heavy loading. In fact, as the number of
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Figure 4. Recognition examples for the connectionist algorithm (top) and the
broadcast algorithm. In the center panels, the embedded model is shown in sol-
id dots, and the randomly selected basis points that resulted in recognition are
shown boxed. Full recognition require d 209 probes in the top example, 150 in the
lower one. The database contained Lr024 models.

Figure 5. Average time required for a single basis probe,
16 points each, as a function of the number of processors
chine; the scenes contain 200 points.
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processors lncreases, reduced conten-
tion in the routing algorithm gives us, in
some cases , afl apparent extra boost.
But such improvements would not con-
tinue forever. Figure 4 shows some rec-
ognition examples.

In the broadcast algorithm, the 8K-
processor machine processes a probe at
arate of 10 milliseconds per scene point,
that is, approximately 2.0 seconds for a

probe using a 200-point scene. Neither
symmetries nor list merging efficiencies
were employed. Experiments with a 16K-
and 32K-processor model indicate nearly
linear increases in speed (see Figure 5),
so a 64K-processor machine should be
able to perform a probe in about 300
milliseconds without the use of symme-
tries.

By way of comparison, both algo-
rithms are easily coded on a typical
high-performance workstation. Perfor-
mance results are highly dependent on
disk access rates and available memory,
but we have seen probe times of roughly
35 seconds for the equivalent of the
hash-location broadcast algorithm on a
Sun Sparcstatron-Z. (Remember that
each of the processors in a Connection
Machine is merely a slow bit-serial
ALU.)

ecogniztng all models embed-
ded in a scene, if there are
mafl/, would require many

Achieving processing times of
instead of minutes would re-

quire (1) access to alarge parallel ma-
chine, (2) smart methods for choosing
basis pairs in the scene , and (3) further
performance enhancements. In the third
area, we could make better use of sym-
metries and employ foldings, where mul-
tiple model/basis combinations are coa-
lesced into a single bucket, to reduce
the time for histogramming.

Both algorithms exhibit sublinear
growth in execution time as the number
of mod els M increases (usin g O (M) pro-
cessors), which is a hallmark of geomet-
ric hashing methods. However, the con-
nectionist algorithm has better
asymptotics as the number of points S in
a scene increases, and it performed slight-
ly faster in our implementations with
200-point scenes. The hash-location
broadcast algorithm is simpler, and more
amenable to improvements, and should
ultimately prove superior when the num-
ber of scene points is not too large. I
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