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ON A VARIATIONAL INEOUALITY FOR THE HODOGRAPH METHOD

Rober:t A. Hummel

1. Planar fluid flow

The hodograph method has been studied extensively for

incompressible and compressible inviscid irrotational planar fluid

flow. The principal advantage of the hodograph method is that the

system of differential equations become Iinear when expressed in

terms of the hodograph variables. The major disadvantages are that

the hodograph transformation may not be one-to-one, and that the

boundaries of the hodogrraph domain are unknown. Recently' the use

of variational inequalities has been shown to overcome these

difficulties in certain cases. In this paper, w€ outline the

current status of these results.

The equations of motion for planar, inviscid, irrotational

fluid flow are

divp(lql)q=0 (1)

(2)

where p = p(lql) is a siven positive decreasinq function,

and q=O{*,y1 = (Ar(z),g.(z)),2= x+iy.

Equation (1) is the "equation of continuity", and expresses the

physical property of conservation of matter. The second equation

is unphysical, since it results from a theorem whose hypotheses

include a perfect fluid model of the material. As a special case,

incompressible fluid flow results when p (q) is simply a positive

constant, instead of a griven decreasincr function. The usual model

for p(q) for a compressible fluid is obtained from the Bernoilli
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curlq=0
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relation (whose d.erivation uses (2)) , lql2 tZ + p/p

an adiabatic pressure-density law, such as p = cpY

It is not hard to show that the system (1)-(2)

whenever [/[ = M(g) = q/c < l, where

= const., and

1S elliptic

2c= (3)

For incompressible flow, the system is always elIiptic. For a

general density-speed relation p (q) , M < I for sufficiently small

q. For ideal fluids, one can show that M is increasing in g, and

that there is exactly one critical speed q* satisfying lt(q*) = l.
Accordingly, the system (f)-(2) is elliptic providing the solution
q i" subsonic, i.e., lql . q* everywhere.

The ellipticity of the system (I)-(2) is equivalent to the

statement that

v (z\

is quasi-conformal. Indeed, for the incompressible caser w€ may

take p = I without loss of generality, in which case (f) and (2)

are simply the Cauchy-Riemann equations for V(z). The hodograoh

transformation replaces the physical coordinate z of the flow

region with the coordinate e - v (z) formed by the components of

velocity. If the map z + V(z) is locally one-to-one at a poi-nt,

then the flow solution near that point can be represented by the

inverse ilap, which is a function of the hodograph variable

e - gt-igZ . For subsonic flow, since v(z) is quasi-conformal,

the singularities where the hodograph transformation is not one-to-

one are discrete and well behaved.

The hodograph method using variational inequalities r ds

investigated by Brezis and Stampacchia tll can treat a variety of

planar fluid flow problems. Most of the work has concentrated on

exterior domains flow past an obstacle with prescribed velocity
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at infinity. However, flow in a channel with an obstaclen flow

through a Lavalle nozzle, and f]ow past an obstacl_e with cavitation
can all be treated bv similar methods 12,3,41 . To date, these

methods always require a convexity condition limiting the kinds of
geometry of the profile and walls that can be treated. For example,

for flow past an obstacle, we require the obstacle to be strictly
convex- We will also require that the solution satisfy a zero-
circulation condition. Because of the perfect fluid assumption,

flow past an obstacle exhibits no dragn and there is a one parameter

family of solutions, parameterized by

r : [r nru* + ezdv ,Jatt r ,

where .!' is the obstacle profile. Variationa] methods in conlunction
with the hodograph transform have dealt only with the case | = 0.

Final1y, we noLe that hodograph methocls almost necessarily are

restricted to planar fluid flow situations, whether or not variation-
al inequalities are employed.

2. Flow past an obstacle

We restrict our discussion to the problem

past a convex profile with prescribed velocity
given,

(i) PCC,bounded,strictlyconvex,

(ii1 q-,0.Q-

(iii) p = p (q) , density-speed relar_j_on of an

p=1

of findinq the flow

at infinity. We are

c2'* ,

ideal fluidr or

(2.r)
(2.2)
(2.3)

Defining the flow region G = C r p, the flow problem can be stated as

Find q = (et,cr) e tc2(c) n c0(c)l 2 , such rhar

divptlql)l=0 inc
curlq=0 inG
q.n = O on G ,

n = normal to 3P,
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and

ek)
tl _
I-

* (o-,0) as l"l + 
"o

t
I e.,a* + nZdy = 0
JL
a

(2 .4)

(2.s)

Existence and uniqueness of a subsonic solution to (2.L-2.5)

are known t5l . Variational methods using the hodoraph transform

may lead to an independent existence theorem, but the principal

motivation is the simple numerical imrrlementation of a varia.tional

inequality.

Associated with the solution

functions

q are the potential and stream

ql 'oy q2

-aQZ,Yy=Ogt

0x=

\U
I_ x

The stream function Y is
assumethatV=0on AP.

satisfies the quasilinear

constant on streamlines, so that we may

Eliminatinq 0, the stream function

eguation

(1

2o-

#r*c

9t 9-'
)"w Ixxz c

+ (I
xy

2

3 )*o" =0

ff V is known, q can be recovered using qrady = (-0a2, gg1), and

the fact that p (q) 'q is an increasi.g, and therefore invertible

function of 9., for s < q*

3. The Hodograph Domain

since the function v (z) is not grobalry one-to-one, some

points in the hodograph domain may be multioly covered. A key idea

in the extension of hodograph methods to non-symmetric flow is to
view the hodograph domain as a Riernann surface, where points which

are covered more than once are separated into multiple sheets.
When the profile is convex, the Riemann surface ean be described
a-priori.



The description of the Riemann surface depends

chosen to coordinatize the sheets. Of course, the

(91,92) are the most obvious choice, although (p(q)

can also serve. In hodograph methods, it is common

coordinate type representation (0ro), where

$ = arg (91 + iqZ)

o |,n* p (s) 
u=jht s
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on the functions

coordinates

'9I , o(e)'Cr)

to use a polar-

(3.1)

(3.2a)

For incompressible flow, the definition

o = -rog lql ( 3 .2b)

must be used in place of (3.2a) . Note that o = *o corresponds to

a stagnation point q1 Lq,z = 0, rrrhereas for compressible flot^r,

o = 0 is the sonic speed.

To derive a description of the Riemann surface in the (C'Cr)

variables, one first observes that by the classical existence theory,

the solution V(z) is branched over z = o, where V(-) = e_

Further, one can show that V(z) = 0 at exactly two points, both

located on the profile boundary. At a point z on the profile

boundary, VT7|| lies in the same direction as a tangent to aP at

z. Thus V(ap) consists of two closed curves, 'joined at the origin,

and both enclosing q- in their bounded interior regions. Consequent-

Ly , the Riemann surface consists of two sheets, with a first order

branch point at e = q_ ; each sheet is bounded by one of the two

closed curves (see Figure 1). It is convenient to view the surface

cutalongtheline0<e<q The two sheets are joined along
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the cut l-ine in a criss-cross fashionr so that the upper shore on

either sheet is identified with the lower shore on the other sheet.

rn terms of the (0ro) variables, each sheet lies inside strip

domains {(e,o; = T . 0 . n, o > 0}. If we denote the two sheets

by D, and D , w€ have

= {(o,o) : o.[*(e)]\{(o,o) : o t o-} ,

where o_ = o(g_) is the o-value at the branch point. The curves

l, (e) and l,_ (0) correspond to o (q) along the boundary of the profile
+

in the physical plane, and constitute an unknown free boundary of

the hodograph domain. Each curve has a left and right vertical

assymptote at values of 0 that correspond to the (unknown) locations

of the stagnation points on aP. The hodogranh domain is the Riemann

surface D consistinq of D* and D_ , branched over (0 ro_) , and

identified along the cuts left shore to right and right shore to

left (see Figure 2). By viewing the hodograoh domain as a Riemann

surface, w€ obtain a hodograph transform of GU{co} onto D which

is globaIly one-to-one.

Finally, D can be considered as a subset of a Riemann surface

Cl , whose two sheets 0* and A_ both consist of strip domains

without the slits, with the same identifications on the slits as

exist in D. The larger Riemann surface 0 will be the domain of the

competing functions in the variational aporoach considered in the

next section.

Flow equations in the hodograph variables

In the hodograph variables (0,o), Chapyqlin's equation states

that the stream function satisfies
)q:v' = 0

Do' -
T_MZ---z-

p

D.
f

4.

^2*k(a) :i +
a0-

k (o) =where
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(See I5l for a derivation. )

For the variational method indicated belowr w€ use the Legendre

transform of Y , defined by

v=y x#-y#
Note that Y , ds well as Y, can be considered to be defined in the

hodograph domain D. ft can be shown that Legendre transform V

satisfies the differential equation

)-

i #.h,**FSr=o (4.r)

However, V is non-zero on 3D, and so we instead consider

U - Y gp (X* (0) sinO y+ (0) cosO) , (4.2)

where (x+ (0) , y+ (e) ) is the coordinate of ap whose clockwise (resp,

counter-clockwise) oriented tangent has arqument e . The function
U, defined on D, does vanish on 0D, and in fact satisfies gradU = 0

on aD. we extend u to be zero in the strip domains 0* and CI_

outside D* and D-. This function satisfies a variational inequality.

Theorem: Let lK = {v defined on the Riemann surface CI , denoted

by V+ (0,o) on 0+, and V_ (0,s) on CI_, satisfyinq

i. v+ e Hl {CI*)

ii. V* (-n,o) = V* (nro) = 0 Vo

iii. yV+ (o*,o) - yv- (o ,o) - q (o') -p (o).H and

yv*(o-,o) yv+(o+,s) = q(o).g(o).H, where y

is the trace operator, for o ) o_. (These are

the "jump conditions" across the cuts.)
iv. V, > 0 on O., V

T



135

Then U defined by (4.2) satisfies

U E K, a(U,V-U) > <TrV-U> for all V E lK ,

where a (u,6) = ii Lr, re re + -L. u-c . dOdo ,
,is?+ u CI- p- kp, o'o

and 1T,e) = lt q/p R(e).6(o,o)dodo
JJCI uf)

+
r@l++ | q/p.14. (y6* (0' ,o) yq+ (o ,o)) do
J6

Here H = y+(0) - y-(0), Intr = X+(0) - X*(0) ,

and R* (0) = xi (0) cos0 + Y; (e) sinO

(4.3)

Remarks: The proof of the variational inequality (4.3) is quite

simple, and follows from (4.1), once it is shown that U e ]K. Of

the conditions (i)-(iv) to be satisfied by a function in lK, only

condition (iv) is difficult to verifv to show that U belongs to

lK. Verifying (iv) requires the introduction of a class of guasi-

variational inequalities, and requires a monotonicity result. The

details for the incompressible case are given in t71. The

compressible case is no more difficult.

The theorem is valid for both compressible and incompressible

flow. In the incompressible case, one has p I1, k(o) = 1, and

q = e-o . Note that in the compressible case, o > 0 by definition,

whereas for incompressible flow, drr e-priori lower bound for o also

exists t1l , but may be negative. When the special condition of

symmetry of the profile (with respect to the horizontal axis) is

irnposed, the variational inequality can be shown to reduce to the

ones considered in earlier work.
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5. Practical Conssguelces

Although the variational ineouality (4.3) involves functions

defined on a Riemann surface, and a fairly complicated distribution
T, it nontheless leads to an extremelv simple algorithm for finding

flow solutions to the problem (2.I)-(2.5). The variational
inequality may be solved numerically to yield TJ, or equivalently

V , which is composed of two functions, V+ defined in D* , and

Y_ defined on D-. Note that the subset D 9 n is determined from

the solution U as the set where U / 0. Viewino V* as functions

def ined in (w, ,w, ) = ( Oe1 r.gg2) variables, simnle properties of the

Legrendre transform show that

fa
L5;, t =x+iy=2,a l;

a*rJ 't

where V(z) = ql iqz That is, from V one can determine the

physical point assigned to a qiven velocity.

To find V , the inequality (4.3) can be formulated in

complementarity form. Namely, V is a smooth function on 0, satisfies

the differential equation (4.1), and satisfies the constraints

qp(x+(0)'sin0 - Y+(0)'cos0)

qp (x_ (0)'sinO Y_ (e)' cos0)

One can regard the problem as a coupled system

V_ , with the couoling expressed as continuity

cuts.

q

on 0.+

on 0_

involving E+ and

across the identifed

The use of variational inequa-lities for the hodograph method

seems to be a natural way of locatinq the unknovrn boundary of D.

The Riemann surface appears in a natural fashion also, &s the i-mage

of a hodograph transform which has been made one-to-one. The

convexity requirement for P has been used in the representation of
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the boundary, and more importantly, to specify the qeneral structure

of the Riemann surface, So that the competing functions may be

defined on a fixed Riemann surface CI .
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