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Junctions: Detection, Classification, and
Reconstruction

Laxmi Parida, Davi Geiger, Member, IEEE, and Robert Hummel

Abstract—dJunctions are important features for image analysis and form a critical aspect of image understanding tasks such as
object recognition. We present a unified approach to detecting (location of the center of the junction), classifying (by the number of
wedges—iines, comers, three-junctions such as T or Y junctions, or four-junctions such as X-junctions), and reconstructing junctions
(in terms of radius size, the angles of each wedge and the intensity in each of the wedges) in images. Our main contribution is a
modeling of the junction which is complex enough to handle alil these issues and yet simple enough to admit an effective dynamic
programming solution. Broadly, we use a template deformation framework along with a gradient criterium to detect radial partitions
of the template. We use the minimum description length principle to obtain the optimal number of partitions that best describes the
junction. Kona [27] is an implementation of this model. We (quantitatively) demonstrate the stability and robustness of the detector
by analyzing its behavior in the presence of noise, using synthetic/controlled apparatus. We also present a qualitative study of its

behavior on real images.

Index Terms—Junctions, corners, feature detection, fow-level vision, minimum description length (MDL) principle, energy

minimization.

1 INTRODUCTION

critical component of most recognition systems is a
stable, representative feature extraction from images.
One of the key features used in recognition is junctions: T-
junctions, Y-junctions, X-junctions, and so on. These junc-
tions are also critical for stereo vision modules or motion
modules, since these are places where occlusions can be
identified. Such points, for example, coincide with the im-
ages of trihedral vertices of an object. These are critical
features for recognition as suggested by [6], [7], [33]. They
are also critical features for motion as suggested by Walach
experiments [34] and by Movshon and Adelson [1]. A study
of the role of junctions in stereo is presented in Malik [21].
There have been basically two different
views/approaches for detecting junctions: edge detection
followed by grouping of edges to form junctions [25], [24],
(4], [2], [13], and, treating a junction as a template matching
phenomenon [8), [12], [15]. In the former, it is assumed that
the presence (or absence) of a junction is determined by
“grouping” the intensity gradients near a hypothesized
junction. Usually one is interested in examining large gra-
dients in the direction perpendicular to the hypothesized
Radial line. Experiments in this framework are limited, and
even the richest ones shown in [25] are interesting but not
exhaustive. In the latter approach, it is assumed that a
(suitably small) local neighborhood is sufficient to detect a
junction. The basic idea is to fit a junction-model to the in-
put signal in a neighborhood. This involves minimizing an
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energy function which gives a measure of the “distance” of
the junction-model from the input signal.

We use the template deformation framework to develop
a “junction detector,” to find corners (two-junctions), tri-
corners (tri-junctions), quad-corners (quad-junctions), etc.,
defined as points where two or more homogeneous surface
patches are located within a neighborhood of the point. Our
approach is to use a combination of the two paradigms:
grouping of edges (via Dynamic Programming) and fitting
templates. We use a template deformation framework, us-
ing the minimum description length (MDL) principle, and
we include the gradient criterium in order to detect the ra-
dial partitions of the template as a grouping mechanism.
The task is to find the minimum number of wedges that
best describes the junction. Note that as we increase the
number of wedges, the junction description gets more accu-
rate; hence, the task is to use the MDL principle to obtain an
optimal number of such wedges. The minimum length en-
coding principle was first suggested by J. Rissanen [28],
[30], [31], and is very close in spirit to the Kolmogorov suf-
ficient statistic, as discussed in [3].

Kona' [27] is an implementation of our model. To test the
stability /robustness of the detector, we have experimentally
analyzed its behavior for the location and junction parame-
ters against noise. We used a synthetic/controlled apparatus
for a quantitative study. We have also qualitatively studied
the stability /robustness of detector for real stereo images.

Our model is in contrast to other approaches which we
briefly review here. In [13], in order to find corners, a local
operator is first applied to detect possible junction loca-
tions. Then, inside an area around this, the edge lines are
detected and depending on this number (of edge lines), a
parametric model is used to fit the data is fit in a small re-
gion (25 x 25 pixels).

1. The word for “corner” in Hindi is Kona.
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Fig. 1. Piecewise constant features. {a)-(b) A junction detector is shown on the top row: three-junction template with edges at angles 6,, 6, and 6;
with intensities Ty, T, and Tj. (c)-(d) A bar detector is shown: It is characterized by an angle a which gives the inclination of the bar and the in-

tensities 7y and T, at “heights” Y, and Y, from the center of the location.

The idea of performing local feature detection by pro-
jecting image data onto a subspace is fundamental in [8],
[10]. Basically, the input is orthogonally projected onto a
finite dimensional subspace of the Hilbert space of func-
tions. An energy function (which is the L* norm of the the
difference of the input and the fitted function) is minimized
in this finite dimensional space. The two main issues are
finding an orthonormal basis that spans a good finite di-
mensional subspace and minimizing the energy function.
This approach can give closed form solutions for edges (8],
(10], and lines [9]. A generalization to junctions is suggested
in [32], using steerable filters, and in [18], through the use
of principal component analysis (PCA). A possible draw-
back for the PCA is that it does not have an explicit model
of the junctions (to be adapted).

The authors in [15], [12] employ an iconic model of the
junctions, giving forms similar to our R (see (5) in Section 2).
See Section 2 for a comparison.

In [16], comers and junctions (which are modeled as two
adjacent corners) are represented by functions (models) that
are blurred with a Gaussian (or an exponential filter) where
the authors use a closed-form solution. In general, numeri-
cal methods are used to obtain parameters that minimize
the distance to the input data using an L norm. This is also
the case in [17].

The paper is organized as follows: Section 2 describes
the junction model. Section 3 studies detailed issues of the
optimization process to estimate the junction parameters.
Section 4 presents the results with a study of the stability of
the detector. Section 5 concludes the paper.

2 THE JUNCTION MODEL

We model a junction as a region of an image where the val-
ues are piecewise constant in wedge-shaped regions ema-
nating radially from a central point, covering a small disk
centered at the point and omitting a (much) smaller disc
centered at this point (see Fig. 1). The parameters of a junc-
tion consist of:

1) the radius of the junction-disk,
2) the center location,
3) the number of radial line boundaries,

4) the angular direction of each such boundary, and
5) the intensity within each wedge.

The radius of the disk addresses the “scale” issue, and the
location of the center is a kind of “interest operator” [11]
that determines the position where the feature is located in
a region, possibly predefined. Another corner-detector [35]
performs a similar role of detecting locations that have a
corner. This uses a predetermined window/mask on each
pixel and compares the intensity of every pixel with that of
the center of the mask to determine whether there is a cor-
ner at the location.

We can formulate the junction detection problem as one
of finding the parameter values that yield a junction that
best approximates the local data using minimum descrip-
tion, and declaring local minima of the error as junctions.
The best-fit parameter values provide attributes of the de-
tected junction.

Let T denote the piecewise constant function/template.
It has N angles and N intensities if N is the number of con-
stant pieces. Further, let I denote the input signal.

Define the energy function, at a point (i, j) on the image
as follows:

E=D+AG, (1)

where 12 0.
The first term, D, is a measure of the distance of the fit-
ted function from the data using the L’ norm:

D= J': J:‘ II(’v 6) - T(O)lzg(r)rdrde, )

where g(r) is an appropriate modulating function that goes
to zero for large 7, thus defining the template size.

We note that the input to the system is an image I that
can be filtered by a Gaussian mask to yield a smooth image
1. Smoothing I is needed due to the discretization of the
image lattice and how it affects the junction detection. Our
analysis of this effect is shown in Section 4.2.

The second term, G, is a measure of the distance of the
gradient using the L* norm.

G= J: I:‘ |V1(’v 6) - VT(eﬂzg.(r)rdrdB 3)
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where g () is an appropriate modulating function, not nec-
essarily the same as g(r).
Note that

al(r,6) 1 9K(r,6)
VI = 5 & t7 30 ©
1 9T(6)
VT(G) = -;—86—“89

where e, and e, are the orthonormal vectors in the r and 6
direction, respectively, evaluated at (r, 6).

Separating the angular and the radial terms, G can be
written as

G=Ae,+ Re,

where

z 1 .
A= I Iz ‘{80 39) g (r)rdrd®, “)

R=| f"( Jg ()rdrde, 5)

Taking g'(r) = *G{r) where G(r) is the Gaussian func-
tion with standard deviation g, our function R() is the same
as the regularity measure S() for junctions as in (4) of [15].
Also, it is the same as @, defined in (31) in [12], which is the
measure of spirality omitting the term normal to the radial
direction. However, in [12], a general method is presented
to detect circular symmetry; thus our function R could be
considered as a special case.

2.1 On the Exact Form of Template T and Energy E
This section gives a more rigorous definition of T and E as a
continuous function of two variables. The reader may skip
this section without loss of continuity. .

Let the image be given by I(x, y). T is a template that
partitions the image in N regions, an “N-junction” tem-
plate. Between the partition lines (wedges), say pand p + 1,
we assign a constant value T, for the template. Let us fur-
ther consider a template for the edges that is zero every-
where except along the partition lines, 8 = ,. We can write
both templates as

T(8) = {(T,,,Op);p €12 ..., N)} =

T(6) = e(6) = {(e,,, 0,
N
; er5(0 - 9?) (6)

where 8y,, = 8,, &x) is the Dirac delta function, and u(x) is
the step function (or Heaviside function), i.e.:

j: 8(x)dx = 1 8(x) = {‘;’ x=9 o and

u(x) = | 8(x)ax ={(1, x290

To fit a junction template T(6) to the image I(x, y) and to
fit an edge template e(6) to the image gradient along the
angle 6 (perpendxcular to the radial line), an error function
based on the L’ norm weighted by a function g(r) is used.
Using the polar coordinate system,

r= \/xz +y2, 8= arctan-; and x = rcos@, y=rsiné
the image gradient is
3l(r,6)  10I(r,6)
or e, +—; 3 €.

Thus, the energy E at a point (i, j) is:

VI =

E=[ " (1(.0)- T(0)50) +
2
,4; a’g’é") _ e(G)‘ ¢ (r)irdrde Y]

where g(r) and g (r) are functions that weights the impor-
tance of the piecewise constant fit according to the distance
from the center r = 0.

3 ENERGY MINIMIZATION
Recall the energy equation:

E = AR +(D + AA)
=AR+E @)

R is independent of the junction template and is used to
filter out the image locations. E is minimized to obtain the
most appropriate junction parameters. We now discuss the
details of computing R (scale and location) and E (junction
parameters).

3.1 Scale and Location (on R)

We have consxdered g(r) = 1/r. Notice that for 4 to be used
in(1), g (F)=r g(r) =ris a choice that makes D and G have
the same unit (mten51ty /length). (Thus, A4 is unitless as
expected.)

3.1.1 Estimating R, and R, (scale)
We further refine g(r) as follows:

0 r<R,
gr)=4%t Ry <r<sR
0 r>R

Notice that we introduce a “hole” of size Ry > 0 and R, is
the size of the window. To compute R, and R, we study R,
which is R for r, the radius being considered. Fig. 2 shows
the plot of the relative values of R, ¢, which is

Rr
T 9)

Notice that R has comparatively larger values close to
the origin, which we remove by introducing a “hole.” We
look for a range of r values where ¢’ is less than a threshold,
1, This leads to obtaining two values that correspond to R,
and R,. See Fig. 2 and Fig. 3 for examples.

r
e =
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Fig. 2. Estimating R, and R;, the size of the hole and the size of the window, respectively. The relative values of R, €is plotted against the radius
r. The threshold value of 7, = 2.1 was used to obtain the values of Ry and R; as shown. Notice that when we pick the lower bound (Ry), we take
one unit less than the picked interval (forrinstagce, the range for the first graph is r=2 ... 4 and R, = 1, Ry = 4). We do this since we sample the
values of R only at integral values and R = R”, r— 1 < s < rwhere s is a rational. (a)-(f) Marked images. (a)-(b) Location 1 (46,50). (c)-(d) Loca-
tion 2 (68,81). (e)-(f) Location 3 (71,27). (g) e, versus r plots for the three locations. (h)-(j) The computed windows. (h) Location 1 (46,50), Ay =1,
R, = 4 pixels. (i) Location 2 (68,81), Ay = 2, A, = 8 pixels. (j) Location 3 (71,27), Ay =1, A, = 4 pixels.

The weight function a(x) which is defined in (37) in [12]
is similar to our g(r) function.

The use of a hole is also supported by psychophysical
experiments [34] that suggest humans may also utilize such
a method. The experiments suggested by Wuerger et al. [34]
have shown that different motion effects can be produced
depending on the junction movement. In a Wallach type of
experiment, junctions occur due to the intersection of lines,
and junctions move due to the movement of the lines. The
results of the experiments in [34] seem to suggest that junc-
tions are detected although there is a small gap (R;) be-
tween the lines.

S —=

3.1.2 Estimating the Location

We do the following to select the best location in an image
rcgion,2 We compute R = R/r for all the points in the re-
gion (with not necessarily the same window size). The one
with the minimum value defines the location. We illustrate
this in Fig. 4.

3.2 Reconstructing the Junction (on E)

In this section, we explain how the junction parameters
(number of wedges, wedge angles, and wedge intensities)
are estimated. Recall that the last section discussed the es-

2. Notice that R has unit (intensity)’ length; thus R has unit (intensity)”.
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(e)

(b)

()

Fig. 3. An example to show the dynamic computation of R, and R, at different locations on the image. We have used t,, = 2.1. (a) Position on the
image. (b) Position on the image. (c) Adaptive window at (a), (R = 1, Ry=3 pixels). (d) Adaptive window at (b), (R, = 2, R, = 6 pixels). (e) The

best fit to (c). (f) The best fit to (d).

timation of the radius (size) of the junction and the size of
the hole.

We can carry out an appropriate numerical integration to
obtain the value of the first term R. The second factor, E, is
used to estimate the junction template. The unknown fac-
tors are: N, the number of intersecting lines (or wedges) at
thujunction,’g {6}, {T,}, p=1... N, where N is the number of
wedges, 6,5 are the angles where the partitions occur, s
are the intensity values.

We can write down E as

E=F+7V,
where, T is fixed, that is, it does not depend on the un-
known parameters, whereas 'V does. Recall g‘(r) = r:g(r).
With some straightforward manipulations, we obtain:

Bl
aT> & a1’ ar

V= j[ T%(6) - 27(6)1(6) + ;"[W -2 WW] g(r)rdrdé

: au(r.60)Y
I°(r,6) + i[%)} :(r)rdrd@

F can be approximated numerically. Also, V can be ap-

proximated as V.

3. N for homogeneous region is one, for line and corner is two, for junc-
tions like T-, Y-junction is three, four for X-junction, and so on.

N
g TR Z[(le —0, 02T Dy 5 +T,C)+

p=1

A=2T;@,1), +C'T)]

where
6 J::;g(r')rdr SRR (10)
?(9) in ‘[T}(?", (‘))\q(r)rdr’ (11)
* oo | o o0 ia R} 2 3
¢ = [ 6 ar =[ ar BB
. aie) ) I(r0)s(r)rar
{af}! )H,-, = ag |9F = de |6II"
To,0,, = 40 2, 1(jA6) (12)

Further, 7(0), (38.?)& can be approximated numerically.

For the sake of brevity, we have omitted the details of the
derivations here, and present it in Appendix A.
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Fig. 4. Estimating the location of a junction: The use of R/, to locate the center of the junction. L, , indicates the x and y coordinates on the image.
For convenience, the input data is normalized, that is, the intensities are scaled to lie in [0,1]. The unit of each value is (intensiry)z. Note that the
location Lsp 5 has the minimum value in the neighborhood. (7, = 2.1). (a) Input image. (b) Ls, 55 marked. (c) Region around Lsj 6. (d) Ls1 o5, R =
1.24. (€) Lsp 25, R = 1.28. (f) Lsg 25, R = 1.02. (9) Ly 25, R = 1.52. () Lisp 26, R = 0.66. (i) Lgz 06, R = 1.02. (j) Lsy 27 R = 1.12. (K) Lep o7, R =
1.24. (1) Lsg 57, R = 1.16. (m) The junction at location Ls pg.

3.2.1 Estimating Wedge Angles and Intensities ik 2O i <6
b Bnaknbys, 6, 150 ]
Although the energy equation E looks fairly complex, it has FotE e ;
a remarkably simple and natural interpretation. Once the Assuming we know the 6,5, we can obtain T s by setting

role of each faut"tor of the energ.y eq{u‘atlon' is ascertained, }; = 0,Vp. When 4 = 0, r;;} b f(el)’ for some function f{).
some computations (like evaluating ¥, for instance) can be % T, P
omitted without changing the solution. To recapitulate, the  Thus fixing 6,s, the T;s can be shown to be the following;

factors are used thus: &
1) R is used for scale, ie., to determine the size of the f(.?j)
window, R,. This is also used to obtain the exact loca- T = &=k _
tion of the junction in a neighborhood. s 11~ K

PR T Be TSR RbT T junction paramsters. In other words, T, is a piecewise constant fit which is the

The 7(8) (11) can be viewed as integrating the intensity —average value of the data in that region. The energy for the
along a radial line. Thus, the two-dimensional image is fit is
projected on to a one-dimensional coordinate 6, appropri- P ki

ately discretized. = z Z(T(QJ) - T,)1

Let 1(6,) be defined for 6, 6,, ..., 6, and, (6., — 6) = R iy
2x/d, ¥ i.* For a p-junction, T;, T,, ..., TP’ are the template When A # 0, E” has some extra terms. It can be verified
intensities and the wedge boundaries are at that T} is the same as before, and, E” is:

4.1fi=d, i+ 1 is defined to be one.
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Marked Image Region Input

(h)-(n

Fig. 5. Estimating the number of wedges: . is used to threshold the relative errors to declare an N-junction. The unit of E" is intensity”  length.
The thresholding process works in the following manner: We examine the successive relative errors, in increasing n, until we reach an n where
the relative error exceeds the threshold, . = 0.4. The previous value of n is declared as the optimal value. For the first example (top row), the E’
=2,814.93, E* = 1,088.28, E’
= 217461, E* = 567.28, E° = 508.28, E* = 408.21, and the optimal n is 2. For the third example (bottom row), the E’ values are
E'= 7,154.97 E’ = 1,178.82, E° 94257, E* = 670,92, and the optimal nis 2. (a)-(g) Location 1 (46,50). (h)-(n) Location 2 (68,81). (0)-(u)
Location 3 (71,27).

values are E' = 654.07, E* = 504.52, and the optimal nis 3. For the second example (middle row), the E" val-

=1
ues are E

P ki 9

= 338701 <2316, - (0,

I=1 j=k; i=ky

ergy measurement, E". More precisely, the (optimal)
number of wedges, N, is computed by thresholding the
relative error, 1",
We compute the 6,s by exploring all possible set of 0,s.

Frr 1
We summarize the dynamic program g T
f:.fr
cost of fitting i F 106 6 i O fiif
e — HEa nat Notice that by definition, " is unitless. Although, in
il . = « ¢, ! - - 4
{LU‘:T.()t hmnﬂT lo@ Oy -1 0, ... 8, 1< e ; - e ;
principle, we are looking for the minimum ", in practice,
c p=1 we terminate the computation when 1" drops below a pre-
uB sy Jo 0 A iidn 5 =
el e 2o p : defined threshold, say 7, as n is increased. (See Fig. 5 for an
i mmm(fn. C( % ) otherwise i ;
i 1) example.) Note that as the number of parameters increases,
E = min ¢ E" decreases, i.e., " < 1.
s=lm °

This dynamic programming solution has been imple-
mented in Kona.

Fis a constant (fixed), depending only on the image,
and does not influence the junction parameters. The sce-
nario where F could play a role is at the time of compar-
ing the energy values in a neighborhood. But we use R to
filter the neighborhood so F may be ignored without any
damage.

3.2.2 Estimating the Number of Wedges

We estimate the number of wedges by measuring the rate
of increase of energy by thresholding the ratio of the en-

To summarize, the following steps are involved in de-
tecting junctions on a large region of an image:

1) Compute R, the measure of radial variation, and R,,
the size of the hole and R,, the size of the template at
every point.

2) Filter the locations using a threshold on R'.

3) In a neighborhood of a filtered location, pick the one
with minimum R, and remove all other locations
within a radius of R, of this. Repeat this for all the fil-
tered locations.

4) Compute the junction parameter for all the filtered lo-
cations.
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Fig. 6. Test of stability: The range of intensities in the image is 0-255.
A noise with a Gaussian distribution, with standard deviation o, is in-
troduced randomly at each pixel. The first image in the top left has

o = 0 (that is, no noise) and the angles of the three-corner at the cen-
ter, (x, ¥), are a;;= 90, ay;= 180" and ay; = 315" with intensities i;; =
120, ipg= 200 and i3, = 40. ois varied from 0 to 69 to obtain 24 images,
three of which are shown in the top row for illustration. The three-
corners around the center, (x,, ¥,), of each image is extracted and the
following errors are computed: error in location, errL; = [x—xl + ly,~W,
error in intensities, {emf(,)2 = EHB (izs a},}2f3, error in angles, (errA,T)z =

2}_:‘3 (8jg— aﬁ)zf’& Finally, errL; vs {o}, errA, vs {a}, and, errl, vs {c} are
plotted. See the text for further explanations. (a) o = 0.0. (b) o = 30.0.
(c) o=69.0. (d) Noise in image.

Kona is an implementation of this junction model. It is
programmed in C. A version in C'" and a parallel imple-
mentation of Kona is also available.

4 RESULTS OF EXPERIMENTS

We carried out a series of experiments on synthetically gen-
erated images (see Fig. 6 and Fig. 7) to test the stability of
the algorithm in the presence of noise in the image, and to
further understand the role of smoothing. In these experi-
ments, we suppressed the use of threshold values using a
fixed R, = 4 and fixed N = 3, i.e., forcing the algorithm to
pick up the optimal three-corners. We then carried the ex-
periments on real images to test the general performance of
the algorithm.

(a) (b) (c)
10 . . e =
e g ikl
E8t = ~
// i
0 LRI R 1 PR 5 L 1 i'E
0 10 20 30 40 50 60 70
20, - .
15} - % —
E | s ’/.../
o 10E S
5.. o o | Tt L b - —d L |
0 10 20 30 40 50 60 70
50— T T B
_4of v S i 1
£ o
301 Fi
| J/
20: R L ! L 1
4] 10 20 30 40 50 60 70
Noise in image
(d)

Fig. 7. Test of stability over smoothed noisy images: We use the same
set of (noisy) images as used in Fig. 6, except that these images are
now smoothed. We increase the smoothing factor as the image gets
noisier. The first eight images (o =0, 3, ..., 21) are smoothed using a
o, = 2.0, the next eight (o = 24, 27, ..., 45) uses o, = 3.0 and the last
set (o = 48, 51, ..., 69) uses g, = 4.0. We plot the errors as in Fig. 6.
As expected we are able to get rid of the high errors for the very sharp
images (low values of o). (a) o= 0.0, o, = 2.0. (b) 0= 30.0, g, = 3.0.
(c) 6=69.0, 0,=4.0.

4.1 Stability of the Algorithm

Fig. 6 shows the result of one such experiment where we
look for three-corners in the center region of the image. It
shows that when the image edges are sharp (=10 ... 3 in
the figure), the error in the angles and the intensities are
slightly higher. The errors are least in the range of 6=6 ...
20, and increase further on.

Note that the (Manhattan) distance of the location of the
three-corner is less than six pixels; the error in the angles is
bounded by 30" at the very worst and the intensity differs
by 40 units in the worst situation. It also shows that, in the
best situation the angle differs, on an average, by 15  from
the true answer.

4.2 Effect of Image Smoothing

We present in Fig. 7 the results of one such experiment. The
images used here are the smoothed version of the ones
shown in Fig. 6. Note the reduction in error around the
sharp images or low values of o.
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— g ,
(a) (b) (d)

Fig. 9. The image of a transparent object occluding a dark object in the
background. We show two X-junctions detected and reconstructed by
the algorithm. (a) The marked images. (b) The window around the
marked points. (c) The corresponding 1D signals. (d) The 4-junctions
at the points.

(9) (h)

Fig. 8. Examples of a sharp cormner (column 1) and a T-junction on an
image (column 2). We have used 7, = 2.1 to get Ry and R, values, and
7.=0.4 to get the N-junctions. (a) Position on the image. (b) Position on
the image. (c) Adaptive window for (a), (Ry = 1, Ry=4 pixels). (d) Adap-
tive window for (b), (R, = 2, R,=6 pixels). (e) Projection of (c) to 1D sig-
nal. (f) Projection of (d) to 1D signal. (g) Best-fit to (e). (h) Best-fit to (f).

It is worth noting that even for sharp junctions (without
noise added), the algorithm performs better when smooth-
ing is introduced. It is possible that smoothing the image
just along radial directions would be more appropriate, to
avoid smoothing along wedges. In our experiments, this
possible effect was not noticed, while the substantial
speed/efficiency of filtering on x and y (and not along r)
encouraged us to use an overall Gaussian blur.

4.3 Results on Real Images

The threshold for deciding N of the junction, 7, was set to
0.4, and the threshold for deciding R, and R,, 7, was set to
2.1, for all the images we used.” Also, we chose a value of

5. Recall that t and 1, are thresholds for relative errors, hence, are

unitless.

Fig. 10. Example of an image showing the results of the junction de-
tector Kona. The 2-junctions have been filtered which has removed the
large angle corners (> 160 degrees). Also, the low-contrast 3-junctions
have been filtered out. The values of the various control parameters
are: 7. = 0.4 (to obtain N the number of wedges), 7, = 2.1 (to obtain the
size of hole, Ry, and the radius, Ry, of the template), number of radial
lines = 32, A = 1. (a) Marked input image. {b) Two-junctions. (c) Three-
junctions.

A= 1 for these experiments.” We observed that using the
number of discretization units of the angle as 16 has
worked well: Eight was found to be too coarse, and 32 did
not result in any significant higher accuracy.

Fig. 8 shows the function/template that is fit to different
points on the images. Fig. 9 shows an image where the X-
junctions have been detected, and Fig. 10 shows the results
of Kona on a region of the image. After the filtering, it com-
putes the parameters for about sixteen junctions in a min-
ute, on a Sun Sparc Station.

We demonstrate the stability of the junction detector by
running, it on a pair of stereo images as shown in Fig. 11. (The
results of this are intended for use by stereo algorithms.) The
analysis of the result of this is presented in Fig. 12. We meas-
ure the stability by first finding a correspondence between
location (x;, y;) in the left image and (x,, y,) in the right stereo
image and, then, comparing the number of junctions in a
small neighborhood of the two locations.

6. Under ideal circumstances, R = 0, and further, the only nonzero values
of A are along the wedge partition. Thus the value of A controls the amount
of “contrast” in the neighboring wedge intensities of the reconstructed
junction—the higher the value, the higher the desired contrast

7. We choose a multiple of four because of the four quadrants—using any
arbitrary number could do as well, in principle.
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Fig. 11. Kona is run on a 25 x 25 size window (at location (190,350)) (1] 11 D #gegsE YSEM R SR R PR 438
ona pair of stgreo images. It dgtects junctions, with significqnt contrast, g 0 9 g UNNEE 5 STE TSy 5 glileg 3 9 3
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To conclude, we summarize the contributions of this paper: (a)
¢ A modeling of the junction that includes the gradient —
term in the model and supports the removal of a 0°0 0 04 Lo8 it 1 1 ‘l 1 1 1 1 2 2 %'
small disc at the center of the junction. 00,0 0 s0uel vl 1 2 2 a0 2 2202 2
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This paper demonstrates the successful use of piecewise 0. 35 4 pllad i ailp e e 1 3 A ne g
constant functions, using a minimum description length 0:1 2 3 M5 8 U8e 5 55 43 2 3382
principle, to detect features like junctions and corners. 19 9 s P R R EEE D 9 ) 9 D
Similar piecewise constant functions may be used for fea- 1 23 48 8 a6 48t 2211129
tures like bar detectors, blobs, endpoints etc. 19 9 9@ SugEid il B if 1) 1.9
Kona is an implementation on this model. This detector 99 39 e s arE el 112233
is being currently tested in a multitude of tasks such as ob- 171 9o ooy APy ) UGy 1 e S
ject recognition (based on geometric hashing), detection of et b A R 13 0.0 0] e
illusory contours, and depth estimation from stereo pairs of s i n ove il feR g g g 0 0091 RS
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APPENDIX A: COMPUTING E (b)

Exploiting the radial invariance of the templates T(6) and Fig. 12. Kona is run on a 25 x 25 size window as shown in Fig. 11. The

e(8), we can write (7) as follows: 19 x 19 matrix gives a count of the number of junctions Kona detected
in a 7 x 7 window centered at that location. (Thus the (1,1) entry of the
il R o, al ey el s matrix corresponds to location (193,353) of the image and gives the
E = J[, J” [" ("9) al 2"(9“("8) +1 (9)1‘3(’)”"]”10 number of junctions detected.) By inspection, we have indicated the
alignment points of the pair of images by presenting the numbers in
a[(, g \! 10 f);{, ) bold. It can be seen that the number of junctions (after aligning the two

f 113252 -

e ) & +e (0) o ( Yrdrd@ images), match up reasonably well (i.e., gives good correlation values).
96 ngy (a) Matrix corresponding to the left stereo image. (b) Matrix corre-
sponding to the right stereo image.

o al(r, \
= JU J-“ I(r.0)+ ’IL 20 J g(r)rdrd6 where we have assumed g’(r} = r""‘q(f‘}. We can now exploit
the radial invariance of the templates to perform the inte-
. o rrals over dr. Define the following:
+Z lim J pHe ‘[ & &
e—l) 0

; {1; = '3':';1!(.!" ) + i[r(f:[()} — 2re(6) g‘ge} H}: (r)rdrd@
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Fig. 13. The pixels shown as rectangular cells. The ray along 8 shown

by the solid line starting at (x,,y) is split into segments k, 4, ..., /.
Each of these segment lies in a distinct pixel having intensity i, 4, ...,
iy respectively.
2
- 02| o al(r, 0)
F= -[o -[o l:l (r.0)+ 355 (r)rdrd6
C= Iog(r)rdr =R - R,
- - R - R
* - - — 2 - 1
C—Iog(r)rdr—"'ordr— 3
1) = I(:I(r, O)e(r)rdr (13)

Note that
« of(r, 0 J e 37(8)
Io (as )g(')’d’ = ﬁjol(’, 8)g(r)rdr = ¢

The radial integrals can be performed numerically. Thus,

N
E=F+ Zlim,_.o

p=l

J':p-»r‘ [—ZTPT(G) + T:C + A(—Zre(e) ag(:) + C‘ez(a)]:lde

€

We can now perform the integrals over d6 to obtain the
following;:

N
E:]‘+Z
p=1

[(9p+1 - 9,,)(—27,,79,,.9,“ +T2C)+ l(—Zrep(ael)op + C'e:)}

where we have used that ¢(6) = 2; epﬁ(e - 0,,), and

697

ol (6)
(aal)gp =720 'o,

BJ:;(r, 6)g(r)rdr |
26 by

o)t dorime
P

AL [ T(opae
jp+l
= A0 T(jA6)

i=ip

bpat
where the integral L’ '7(6)d8 is adapted to the image lat-
P

tice, by computing 7(6) at every interval A8 and with
(ep+1 - ep) = (jp*l —'].p)Ae'

APPENDIX B: NUMERICAL APPROXIMATION OF (6)
Using the definition of g(r) = 1/r and (11), we have

1(6) = J:;(r, O)(r)rdr

= _[;' iI(r, 0)(—1;)rdr

To carry out the numerical approximation, we define a
grid, as shown in Fig. 13, such that each cell in the grid cor-

responds to a pixel on the image. A ray centered at (x,, y,) of
length R, is broken by the grid into k segments I, L, ..., I,
where each segment lies in a rectangular cell (pixel) with
intensity i, j = 1,2, ..., k. Note that R, = I, + ... + ;. Thus, we
have the following approximation: 7(6) = Z:=| Li;.

Further, if R, > 0, the segments are [,, .., .... I, for some
1SmskandRy=ly+lpy+ .. +l,and 7(6) = 3 1,

j=mel ST
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