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Abstract

Geometric hashing has recently been introduced as a new paradigm for model based object
recognition [3, 5, 7]. The geometric hashing algorithm allows one to find instances of model point
patterns in a scene, subject to noise, obscuration, and transformation. In this paper we concentrate
on the cases of similarity and rigid transformations and examine the parallelizability of the algorithm.
We describe two scalable algorithms for hypercube SIMD architectures. A number of important
building block algorithms and several variations to the basic approach are discussed. For a single
probe with a two point basis, the algorithms have time complexities that are O(log® M +log Slog M)
and O(S +log M) respectively, using M n3-processors; M is the number of models in the database, n
is the number of points per model, S is the number of feature points in the scene, and the model of
computation is a SIMD hypercube. In order to locate an instance of a model, it is necessary to probe
over O(S?) basis pairs until a basis pair is found where both points belong to a model embedded in
the scene. We have implemented both algorithms on the Connection Machine: using the resulting
implementations, it is possible to recognize models consisting of patterns of points embedded in
scenes, independent of translation, rotation, and scale changes, when there are thousands of models
containing approximately 16 points each, with scenes consisting of hundreds of points, where most
of the scene points are spurious noise points, and where embedded model points in the scene may
be obscured or misplaced. With 1024 models and a scene of 200 points, we can achieve a probe time
of 70 milliseconds on a 64K-processor CM-2 model.
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1 Introduction

In a model-based vision system, features such as edges, lines, line-endings, corners, and textures are
extracted and localized in digital imagery, and then compared with a database of models in order
to identify, locate, and complete objects observed in a scene. Many model-based vision systems are
based on hypothesizing matches between scene features and model features, predicting new matches,
and verifying or changing the hypotheses through a search process [2, 4, 10]. A recent method, called
geometric hashing [3, 5, 7], offers a different and more parallelizable paradigm.

In geometric hashing, the collection of models are used in a preprocessing phase (executed “off-line”
and only once) in order to build a hash table data structure. The data structure encodes the information
about the models in a highly redundant multiple-viewpoint way. During the recognition phase, when
presented with a scene and extracted features, the hash table data structure is used to index geometric
properties of the scene features to candidate matching models. A search is still required over features
in the scene. However, the geometric hashing scheme no longer requires a search over the features in
the model sets. The result is that the recognition phase offers computational efficiencies over more
traditional model-based vision methods.

Geometric hashing search is highly parallel. As we will explain, there is parallelism available in the
search over scene features, and there is parallelism in the indexing process.

In this paper, we explore the parallelizability of geometric hashing, and present two algorithms. We
also present a number of modifications that are useful for efficient parallel implementation of geometric
hashing for the particular case of point features. A number of building-block parallel algorithms that
are used in the first of the approaches is also described; a radix-sort based histogramming algorithm
for a hypercube-connected SIMD parallel machine is a particularly novel component of that approach.

We have implemented the algorithms on the Connection Machine. Using the resulting implemen-
tations, it is possible to recognize models consisting of patterns of points embedded in scenes, inde-
pendent of translation, rotation, and scale changes, when there are thousands of models containing
approximately 16 points each, with scenes consisting of hundreds of points, where most of the scene
points are spurious noise points, and where embedded model points in the scene may be obscured or
misplaced. The system will need to search over pairs of points in the scene, and recognition will be
obtained as soon as a pair of points are chosen so that both points lie on the embedded object, although
multiple pairs may be probed at the same time, and many heuristics exist for choosing likely basis pairs.
With 1024 models and scenes consisting of 200 points, the implementation yields an execution time of
approximately 70 milliseconds per probe, with a fixed basis set, on a 64K-processor CM-2 model. If
multiple basis sets were probed at once, the execution time would increase, but not in proportion to
the number of basis pairs.

A related parallel implementation of geometric hashing is reported by Bourdon and Medioni [1].
They achieved good parallelization of the preprocessing phase, but less parallelization of the recognition
phase. In their implementation, the parallel capability of the Connection Machine is used to perform
the numerical computations of the hashing process, but the communication aspect of the voting process
is left to the host. Further, they deal with a small number of models in the model base. In particular,
the hash table must be shared by all processors. In our study, we have attempted to distribute the
hash table, so as to achieve sizable speed-up in the recognition phase in the presence of thousands of
models. We are especially concerned with efficient histogramming methods in order to perform rapid
voting.
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2 Geometric Hashing: A brief introduction

We begin with an extremely brief summary of the geometric hashing idea. We give a high-level de-
scription of geometric hashing, then give an example for the case of recognition of dot patterns which
may be subjected to translation and obscuration in the scene, but not rotation nor scale transforma-
tion, and finally present the algorithm for dot patterns subjected to rigid transformation or similarity
transformation.

Features are extracted from the image, and a subset is designated as a basis set. The feature values
are measured relative (in some sense) to the basis set. The values of the features are used as indices
into a hash table, where records are kept of model features that map to the same location with respect
to some basis set chosen from the model. Each such hashed feature votes for the set of possible models
and basis sets stored at that location in the hash table. An important aspect of the geometric hashing
paradigm is that an object is multiply encoded, using many different basis set selections. In this way,
as long as a reasonable basis set is chosen in the recognition process, an identification will be made,
since the basis set will be one of the many sets used to encode the object. Conceptually, the method
can be seen as a sequence of measurements and maps, where each map projects to locations determined
from the previous map by a process of fixed links and measured values.
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Figure 1. A model consisting of five dots.

At first glance, geometric hashing seems related to the Hough transform for feature extraction.
However, the analogy goes only as far as the existence of a voting mechanism in both schemes. A
discussion of the difference between geometric hashing and the Hough transform may be found in [5].

For concreteness, let us explain the geometric hashing scheme for dot patterns, where we wish
to perform recognition of patterns that may be translated (but without rotation, scaling, or other
transformations). Figure 1 shows a model that consists of five dots. Suppose that we place dot “1”
at the origin of a coordinate system. Then the other dots lie at four different locations (z,y). Let us
record in a quantized hash table, in each of the four bins where this information lands, the fact that
this model (M;) with basis point “1” yields an entry in this bin. This is shown graphically in Figure 2,
viewing only the entries of the form (M;,1). Similarly, the hash table contains four entries of the form
(My,2), and four entries of the form (Mj,3), etc. Each entry is located by placing the base point at
the origin of the hash table, and observing where the other points of the model land. The resulting
hash table, with the entries for all base points of model Mj, is shown in Figure 2. The same process is
repeated for each model. Of course, it can happen that any one hash bin receives more than one entry.
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Figure 2. The hash table entries for all base points of Model M.

As a result, the final hash table contains a list of entries of the form (model, basepoint) in each bin.

In the recognition phase, a single point from the scene is chosen as the basis point. The coordinates
of all other points are then calculated with this point placed at the origin. Each point is mapped to
the hash table, and all entries in the corresponding bin receive a vote. If there are sufficient votes for
a particular (model,basepoint) combination, (m,p), then a subsequent stage attempts to verify the
presence of model m with the designated point p located at the chosen basis point. Note that if a
point is missing from the scene because it is obscured, recognition is still possible, as long as there
are a sufficient number of points that hash to the correct bins. The list of entries in each bin may be
large, but because there are many possible models and basis sets, the likelihood that a single model and
single basis set will receive multiple votes is quite small, unless the configuration of transformed points
coincides with a model. In general, we do not expect the voting scheme to give only one candidate
solution (see [6]). The goal of the voting scheme is to reduce significantly the number of candidates for
the verification step which might be quite tedious and time consuming (see [13]).

The cases where the dot pattern has undergone rotation and translation are treated analogously
with two points now needed to define a basis. Refering again to the model in Figure 1, suppose that
points “4” and “5”, in this order, are selected as the basis. Let us position the model in such a way that
the basis aligns with the horizontal axis of a coordinate system whereas the basis’ midpoint coincides
with the (0,0) of that system (Figure 3). Then the remaining dots lie at three locations (z,y). A
quantized hash table will now record, in each of the three bins where the dots land, the fact that
the model M; with basis “4-5” yields an entry in this bin. During recognition, two points from the
scene are chosen as the basis. The coordinates of the other scene points are calculated with the basis
positioned as described above. Each of the points is again mapped to the hash table, and all the entries
in the corresponding bin receive a vote; we continue as above. If the dot pattern is also allowed to
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Figure 3. Using two point bases.

undergo scale changes, then one need only use the length of the selected basis as the length of the unit
vector of the coordinate system.

Since the voting can be done simultaneously for all models and all possible bases on a model, for the
algorithm to be successful it is sufficient to select scene points belonging to some model, as a basis tuple.
In such a case, the model with the appropriate basis will receive a high score in the voting procedure.
Classification or perceptual grouping of features can be naturally incorporated into this method by
concentrating only on some special basis-pairs (see [7] for a method which utilizes concavity entrances
of object boundary curves).

3 Building-block Algorithms

Two building-block algorithms will be used in the first of the two geometric hashing implementations.
The algorithms are a triple-product computation, and histogramming. We now describe the algorithms
for a hypercube-based SIMD machine. We assume a CREW model of computation such that any
pattern of concurrent reads to neighboring processors uses unit time. (Accesses are permitted along
different dimensions in the same clock cycle).

3.1 Triple Product

The triple product problem is defined as follows: given three finite sets A = {ai}?:l, B = {bj};2=1>
and C = {ck}le compute the triple product A x B x C, i.e. the set of all the ordered triplets
{(as, b5, e) 2732 e -

One way-to compute the triple product is to perform twice an outer product, so as to compute first
A X B, and then (A x B) x C. An outer product for the Connection Machine is succinctly described
in [9]. A straightforward extension of the method leads to a direct triple product computation, which
we now describe.

Using standard gray-code embedding algorithms, we configure the hypercube as a three-dimensional
array of size Iy by I3 by l3. (We must assume, at this point, that the I; are powers of 2). The processors
are indexed by their coordinates (4,7, k) which we regard as lattice points in (z,y, z)-space. We assume
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that, initially, data element a; is contained in processor (,0,0), b; in processor (0,7,0), and ¢ in
processor (0,0,k).

The algorithm has two phases. During the first phase, the a; data is spread along a row in the
direction of the y-axis, the b; data is spread in the direction of the z-axis, and the ¢, data is spread in
the direction of the z-axis (see Figure 4). When completed, the processor (¢, 7,0) has the datum a;, the
processor (0,7,k) has the datum b;, and the processor (%,0,%k) has the datum cg. In the second phase,
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Figure 4. Triple Product: the two stages.

the data along each plane is spread into the entire cube, first spreading the data on the (z,y)-plane
along the z-axis, then the data on the (y,z)-plane along the z-axis, and finally the (z,z)-plane along
the y-axis (see Figure 4). When completed, processor (3, j, k) will have received datum a; from (%, 5, 0),
datum b; from processor (0,7,k), and datum c; from processor (7,0,k) and thus has the triple product
element (a;,b;,ck).
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The operation of spreading data along a single axis that occurs during both phases can clearly be
performed in O(l;) time (for the appropriate axis), since nearest neighbors are adjacent in the hypercube,
but can in fact be completed in O(log!;) time. This is because a parallel prefix operation may be used.
Namely, the operation is equivalent to a collection of concurrent parallel prefix computations with
“copy from the left” as the binary associative operator. The parallel prefix computation makes use of a
recursive doubling scheme to spread the data rapidly along the axis. Power-of-two communication along
each axis is provided by O(1) communication cycles due to the gray-code embedding. Specifically, if ¢(7),
i=0,1,...,n — 1, is a gray-code (n a power of 2), then it can be shown that g(¢) and g((i + 2*)modn)
differ in at most two bits, and thus can be connected by two communications cycles on a hypercube.
This is true for any value of k. In the parlance of the Connection Machine Paris language, the operation
is a “scan_with_copy.”

3.2 Histogramming

Histogramming is defined as follows: given a collection of data {ai}ﬁp such that each a; is an element
of a finite collection of possible values, say a; € {1,2,...,V} determine a count of the number of elements
equal to each possible output value, i.e., H(k) = #{¢ | a; = k}.

As pointed out in [9], there are three distinct approaches to parallel histogramming:

(1) Sequentially iterate, from 1 through V'; for each value k, allow each a; to mark itself if it is equal
to k, and then perform a parallel sum to count the number of elements that were marked. Since
parallel summing is O(log V), this method has parallel complexity O(V log N).

(2) Perform additive writes; each processor looks at its value a;, and sends a message to processor a; to
increment an accumulator. There are two virtual processor sets, the initial set with N processors,
one per data element a;, and the V processors in the output, containing one accumulator per
processor. The parallel complexity on a SIMD hypercube without additive writes is O(log? N +
log V'), although additive writes will typically be handled in an average-case more efficient method.
In practice, the messages to increment accumulators will be combined in a probabilistic routing
network, to avoid serialization at the location of the accumulators. The complexity is in all cases
at least (log V), since if all messages are destined to a single processor, then the combination of
the messages is equivalent to a global sum, but in practice, the complexity will depend upon V'
and N, the efficiency of the routing algorithm and the combining of messages in the router.

(3) Sort the data, so that a;) (where 7(-) is a permutation) forms a nondecreasing sequence, for
t=1,...N. For example, the Batcher bitonic sort algorithm operates on a hypercube machine in
O(log? N) time. After sorting, each processor can determine if the data in the processor to its left
is different. If so, it marks itself as the head of a constant-data block. Since each processor needs
to be able to communicate with its neighboring processor for this step, the processors should be
configured as a one-dimensional array embedded in the hypercube, using a gray code embedding.
The Batcher sorting process is still efficient in this configuration, although with a penalty in the
proportionality constant. Next, a segmented parallel prefix sum is used to count the number of
processors in each constant-data block and this information is delivered to the head processor
of each block. Finally, each head processor sends the information about the cardinality of its
block to processor Gr(s), 1-€., to the processor whose index is equal to the data item shared by the
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processors of the block. Since the destinations of the messages are distinct and ordered relative to
the indices of the source indices, these messages can be sent using an O(log N +log V') contention-
free algorithm. The total complexity of histogramming by sorting is thus O(log? N + log V).

For our purposes, the histogram vector is not needed; rather, we only need knowledge of the
few maximum-vote-getting values. For this purpose, in method (3) above, the final stage of sending
messages can be omited, and the maximum counts among the marked processors can be determined and
relayed to the front end. Thus the process of finding the maximum histogram bin can be accomplished
in O(log? N) time.

Assume that the values in the sequence {ai}fil to be sorted are represented in binary bit form, and let
{bi,i }'1\;1 be the sequence of the I-th from the right bits. We sort the values in a stable fashion.

Using the I-th bit from the right as a key sort the data while preserving the order of equal keys:
ar 1l 0.
b: Mark all processors with b;,; = 0.

c: Rank these processors: each marked processor determines its relative position among all marked
processors using a parallel prefix sum (Nassimi-Sahni [11] describe a RANK algorithm). Let r; be
the rank of a processor if it is marked and ¢t be the maximum r;.

d: Mark all processors with b;; = 1.
e: Rank these processors as well; let s; be the rank of the :-th such processor.

f: Move the a; data: every processor with b;; = 1 sends its data a; to processor ¢ + s;, while every
processor with b;; = 0 sends its data to processor r; — because the paths of communication are
somewhat ordered, this routing can be done in O(log N) time, (specifically, using the Nassimi-Sahni
CONCENTRATE and DISTRIBUTE algorithms [11]). At this point, all items are stable sorted
with respect to their low-order bit.

g l—1+1.

h: If I <log V, repeat steps b through g using the new bit sequence {b;;},.

Upon termination, the sequence {a;}{L; will be sorted.

Figure 5. Simple Radix Sorting on a Hypercube.

In the actual implementation of geometric hashing, to be described later, we used method (2) above.
However, the most efficient implementation would have been to use method (3) in conjunction with
a radix sort algorithm. Lin and Kumar [8] provide a hypercube-based radix sort algorithm; however,
because they sort from high-order bit to low-order bit, the algorithm is unnecessarily complicated. In
Figure 5 we outline a simpler method for performing radix sorting on a hypercube; this method results
in a complexity (as with Lin and Kumar’s algorithm) of O(log V xlog N). An illustration of the method
is given in Figure 6. The histogramming algorithm is completed as described in (3) above.
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Figure 6. Radix Sorting: an illustration.

4 Data Parallelism over the Hash Table Bin Entries

In this section we describe the first of the two parallel algorithms for implementing geometric hashing.
The algorithm is data parallel over the hash table bin entries and the scene points, but serial over the
bases. In what follows we assume that our database contains M models; each model [ has an associated
set, 51 = {(Z1k,Y,k) } 31, containing the coordinate pairs of the /-th model’s n points.

4.1 Preprocessing Phase

During the preprocessing phase the hash table data structure is constructed. This phase is performed
off-line. The hash table corresponding to a given database of model objects is built only once and
then stored. This phase consists of two passes and is computationally expensive; the serial complexity
is ©(Mn3) for two point bases. The proposed parallel algorithm has time complexity @(M logn) if
Mn3 processors are used. With fewer processors the time complexity is higher; however, this is not of
concern since the operation is performed off-line and only once. Three virtual processor sets participate
in the first pass, namely the feature coordinates set Vi, the triple product set V5, and the hash table
set V3. An additional set, Vj, the bin-entry set participates in the second pass. We assume that the
number of hash table bins is less than or equal to Mn3.

Figure 7 shows a schematic diagram of the first pass. The purpose of this pass is to determine
the number of entries hashing in each bin of the hash table, when all the models in the database are
considered. This pass consists of three stages.

We iterate sequentially over the models. We assume that at the beginning of the first stage, the
lower order n processors of set V; contain the z and y coordinates of the n points in S; for the I-th
model; each processor contains the coordinates of exactly one such point. The set (.5} X S7) X S is then
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computed using the triple product algorithm described in Section 3.1. Each of the first n3 processors
of set V; now contains a triplet: [(2i,%:),(z;,9;), (zk,yx)] € (Si X Si) x S;. The first two points of each
such triplet define an ordered basis and thus a coordinate system.

For each model ! the first n PE’s
12 3 VP set V; n contain model’s data (one point per PE).
% L1 | Joo | |oo o |
a
T1 T T Compute triple product.
g " Triplets will reside in first n® PE’s.
€ Y1 Y2
Mgk =
(1,1,1) (i, 5, k) VP set V, (n,m,n)
11 ©o o | °© o o | I I
— TiyYi Disable PE’s where:
s TjiyYj t=jori=korj==k.
Tk Yk ; s Wi ;
t ’ Disable PE’s with bad basis.
a
g Compute Relative Coordinates.
€1 5,k)
2 (1,1,1) (n,n,n)
[ =< © o o ><I [><I | | oo o (><l | 1> |
17k
Active PE’s compute hash bin index
S hijr and send message “increment local
t counter by 1” to corresp ondmg PE.
g yav/4 / / \ / / / /
e
3 ///\ W VP set V3 /
| / YAV / / / / /
Figure 7. The first pass of a parallel algorithm that constructs the hash table data structure (Preprocessing
Phase): determining the number of entries hashing in each bin of the hash table. The eventual hash table will
have one processor per hash table entry.

In the second stage, each of the processors of set V, compute the coordinates of the third point of
the triplet with respect to the coordinate system defined by the first two points of the triplet. In order
to avoid numerical overflows resulting from degenerate bases, we disable those processors where 7 = 7,
as well as those processors where the locations of the first two coordinate pairs are extremely close. In
addition, to ensure that the third point is distinct from the first two, we also disable those processors
where ¢ = k or j = k. The precise formulas for the computation of the relative coordinates depend
on the type of the allowed transformations (e.g. similarity or rigid transformation). Last, the active
processors compute the coordinates of the third point in the triplet, using the appropriate function.
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During the third stage, each of the active processors in V5, use the coordinates of the third point
to compute the index of the hash table bin (i.e., the address of the associated processor in V3). This
hash bin would traditionally contain entries of the form (model,,j), where model [ is the model, and
?,J are the local indices in the 7,7,k triplet. The number of entries is updated by sending an “additive
write with increment by 1” to an accumulator in the appropriate bin.

This process is repeated for each of the models in the database. When all of the models have been
processed, each processor in V3 has a count of the number of (model,,j) combinations that hash into

(1,5,k) = VP set V,
B (1,1,1) (n,n,n)

L IX]I | oo o DI IXI [ Joeoo X [ X |
ijk

Active PE’s compute hash bin
index h;j; and send (1,1, j) to
corresponding PE.

z/ / / / [/ /
S / [/ N/ [/ [/ /
t
a
g VP set V3
e
YAV AV A4 N\ / / / / \ /
/S /S S S / [/ S/ \ /
l /S / /L \ /
Notified PE in charge of bin with
3 index h;j sends (I,%,7,) to the
(Thijk + Oh,-jk )—th PE of V,
0 T T;
L [H] | Jooo | | [H[ [ [ [eoe [HJeoo [ ]
VP set V4

Figure 8. The second pass of a parallel algorithm that constructs the hash table data structure (Preprocessing
Phase): mapping each hash table bin entry to one processor.

the corresponding hash table bin; let number-of-entries be that count. Using the index h of a hash
table bin as a rank value, the corresponding processors of set V3 can now order themselves. Performing
a parallel prefix sum computation on the number-of-entries values, the h-th processor in V3 obtains a
value T}, that is the total number of entries hashing in hash table bins 0 through h — 1 inclusive. If all
the bin entries were to be inserted in one-dimensional array, A, so that all the entries of bin h appear
before any entry of bin h + 1, then T} would be the starting offset for the entries of bin h.

During the second pass, each of the hash table entries are mapped onto exactly one processor from
the processor set Vy; each processor of V4 will contain one entry. The processors of V; that correspond
to the same hash table bin can be thought of as forming a “group.” The Tj-th processor of Vj is
associated with the first entry of hash bin h and is assumed to “head” all the processors of its group.
Three stages comprise the second pass.

In the second pass, we again iterate sequentially over the models. The first two stages remain the
same as before. During the third stage, each of the active processors in V2 compute the index h;j (i.e.,
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the address of the associated processor in V3) where the tuple (model, i, j) would be deposited and send
a message containing (model, 1, 7) to that bin. Each of the processors of V3 also maintains a temporary
local variable Oy, that is initially zero. The processors of V3 that received a message use the previously
computed T, to forward the tuple (model, i, j) to processor Ty, + Op,,, of set V4. Finally, the value
of the offset within a group, Oh,y» is incremented by 1 on all of the currently active processors of Vs.
A number of collisions are likely to occur when more than one processors of V, attempt to send distinct
messages to the same processor in V3. This problem can be solved by using a Fetch-and-Add operation
on the variable Oy, . However, in practice, the number of contending processors is expected to be
small making this solution unnecessarily complicated. In our implementation a simpler protocol based
on locks is used instead. Figure 8 shows a schematic diagram of this stage: some of the processors
heading a group of entries are shown marked with an H. The above process is repeated for each of the
models in the database.

The hash table is now a combination of two data structures. The first data structure (virtual
processor set V3) contains information about the offset of each group’s head and the cardinality of the
group (i.e. number of model/basis combinations hashing into the corresponding bin). The second data
structure (virtual processor set Vy) consists of all possible hash bin entries (Mn(n — 1)(n — 2)) for the
given database.

4.2 Recognition Phase

Figure 9 shows a schematic diagram of the recognition phase. Three sets of virtual processors
participate in this phase, namely the feature coordinate set Vi, and the hash table set V5 and V3. We
assume that a set of 5" interest points have been extracted from the scene and their coordinates reside
in the local memory of the first .S processors of the virtual processor set V3. The hash table is preloaded
into the local memory of the sets V; and V3. Each processor from the set V; represents one hash bin
and designates the processors of V3 that actually contain the entries of that bin, one entry per processor
of V3. The offset of the head of the group of processors corresponding to the entries of hash bin A, as
well as the cardinality of the group are maintained by the processor of V5 in charge of bin h.

In the first stage, the front end selects a basis pair and broadcasts the coordinates of the basis
points to the S processors of V3. Recall that each processor in V; already holds the coordinates of an
interest point. The two processors whose interest points coincide with the broadcasted basis endpoints
are disabled. The remaining processors of the virtual processor set V; compute the relative coordinates
of the corresponding interest point with respect to the broadcasted basis. They then compute the index
of the hash table bin to be notified. The operations are extremely fast since they involve minimal data
movement.

In the second stage, messages saying “you receive one vote” are sent by the active processors of V;
to the appropriate hash bins. The messages are sent using additive writes and general routing; multiple
votes destined for the same recipient processor combine in the routers. Each of the processors of the
set V, maintains a local votes variable in order to keep track of the number of messages (i.e., votes)
that the processor receives.

In the last stage, every processor h from set V; that received one or more messages in the previous
step relay the number of votes (messages) they received to the block of processors T}, through Ty — 1
of V3. This operation can be done in various ways. For example one can use a modified version
of Nassimi-Sahni’s GENERALIZE [11]. Alternatively, processor h from set V2 can send a message
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Figure 9. The Recognition Phase of a parallel algorithm that implements geometric hashing.
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containing the number of votes to the processor T} in V3. Using a parallel prefix computation with
“copy from the left” as the binary associative operator, processor T} can then spread the received value
to the remaining members of its group (Figure 9). Only the processors of V3 that correspond to entries
of notified hash bins will now be active; these processors contain their own copy of the number of votes
that the corresponding bin received.

At this point, we wish to histogram the entries of the active processors in the set V3. These entries
are (log M +21logn)-bit words and the operation can be very expensive even when performed in parallel.
However, as has already been noted, improved histogramming methods can be utilized, in particular,
method (3) of Section 3.2 in conjuction with the radix sort algorithm of Figure 5. In our implementation,
for purposes of simplicity, we chose to perform additive writes instead. Consequently, use of a fourth
processor set, the histogram bin set V4, is required. Each processor of Vj is associated with one histogram
bin representing a triplet (model,i,5). The processors in the set V3 vote for their (model, i, ) entries
by sending an additive write message to the appropriate histogram bin. The increment amount in these
messages is the value of the wvotes variable at the processor of V3 from where they originate. Votes
destined for the same recipient combine in the routers. Last, a global-max operation of the vote tallies
of each of the processors of the set V4 recovers the winning (m,¢,5) combination. The model is m and
the broadcasted basis corresponds to the basis defined by the ¢-th and j-th points of that model; from
this last correspondence we can recover the transformation the model has undergone, and verify the
quality of the match.

We now consider the time complexity of the recognition phase — the only phase that is performed
on-line. It is assumed that Mn> processors are available!, and that the number of hash table bins is
less than or equal to Mn3, where M is the number of models in the database. Each model consists of
n points.

It is easy to see that the time complexity of the recognition phase is dominated by the histogramming
step. As a matter of fact, the time complexity of the remaining operations of the recognition phase is
no worse than O(log(Mn3)). As was previously discussed, the complexity of histogramming depends
on the particular method that is used. If bitonic sorting is used to perform histogramming, the time
complexity of the recognition phase is O(log?(SMn?)), where § is the number of feature points. On
the other hand, if the radix sorting algorithm is used, the time complexity of the recognition phase

drops to O(log(SMn3)log(Mn?)).

5 Data Parallelism over the Model/Basis/Point Combinations

In this section we describe a second parallel algorithm for implementing geometric hashing. Again, it
is assumed that the database contains M models, each one consisting of n points (coordinate pairs),
and that Mn3 processors are available. This approach is different from the one already described in
that it makes use of inverse indexing. We next introduce describe the data structure that is central to
the inverse indexing approach.

! Actually, no more than Mn(n — 1)(n — 2) processors are needed.
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5.1 The Hash-Function Table Structure

The information previously stored in the hash table is now organized as a collection of records stored
in a multidimensional table indexed by (I,basis, k), where k designates a point in the model /. In
our case, k is an integer between 1 and n. In the table location (I,basis,k) we record the properly
quantized hash table coordinates of the k-th point of model [ as it is computed in the coordinate frame
defined by basis. If we let 3 denote the number of points needed to define a basis (5 = 2 for similarity
transformations, § = 3 for affine transformations), then the new table will be (3 + 2)-dimensional and
will contain at most one entry in each of its MnP+! table locations. More specifically, the bins whose
indices (I,basis, k) are such that point number k occurs in the basis will be empty. Furthermore, all
the bins corresponding to inappropriate basis combinations (such as a basis with two identical or very
close points) will also be empty. Figure 10 shows the part of the hash-function table structure that

point index
5
(0.3,-1.2) (0.5 1.0)
4 (0.1,-0.5) (-0.7,-0.9)
(-0.5,-0.1)
(-0.2,-1.3)
3 \ (-0.4, 0.6) (-1.2,-1.0) -
2 N 10,00 Coznsy | (031
G — 0.7, 0.9
1 \ (08, 0.4) (1009 (210 ( - ) model index
’ (-0.8,-0.4) (0.2,-0.7) (0.4, 0.6) (01, 0-5)
-0.8,-0.4 -2,-0.
- 5

Figure 10. The hash-function table structure: the entries for model M;. The tuples shown in each box are
the coordinates of a model point in the coordinate frame defined by the corresponding (single-point) basis.

corresponds to model M; of Figure 1; the same degree of quantization as the one used in the creation
of the hash table in Figure 2 is assumed here. In this case, the basis consists of a single point, so there
are 5 possible bases, listed as 1 through 5.

5.2 Preprocessing Phase

During the preprocessing phase the hash-function table is constructed. The database contains M
models each one having n points. This phase is performed off-line, only once. For the cases of rigid
and similarity transformations, the basis tuples are formed using pairs of points and consequently, the
hash-function data structure is a four-dimensional table. Three sets of virtual processors participate
in this phase, namely the feature coordinates set V7, the triple product set V5, and the hash-function
table set V3. Each processor of set V3 is associated with exactly one table location. This phase consists
of three stages, and has parallel time complexity @(M logn), given Mn3 processors.

The initial two stages remain the same as in the first algorithm (See Figure 7). We sequentially
iterate over the models. The set S; of the [-th model’s point coordinates is initially located in the
low-order n processors. The set (.57 x §7)x.S; is then computed; each of the processors containing a
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triplet [(z:,%:), (2;,9;), (€k,yx)] computes the coordinates of (zk,yx) in the coordinate frame the other
two points of the triplet define.

During the third and final stage, each of the active processors from the virtual processor set V; use
the values [, ¢, j and k to compute the table location in the four-dimensional table where the hash-
function value should be stored. A message containing the computed relative coordinates, properly

For each model [ the first n PE’s
12 3 VP set V; n contain model’s data (one point per PE).
‘S; L1 | oo J| Joo o | I
& .
T1 T2 z Compute triple product.
§ " Tnpl%ts w1]f reside in first n3 PE’s.
Y1 Y2
11, .
i,j,k) =
( ’(1,)1,1) (i, 5, ) VP set V) (n,n,n)
L1 1 1 © 0o | © o o L1 1 |
— i, Yi Disable PE’s where:
s TisYj t=jori=korj=k.
t Lk Yk Disable PE’s with bad basis.
a
g Compute Relative Coordinates.
NIGE
2 (1,1,1) (n,n,n)
| =< © oo ><I [><I | J o oo 1><] | 1> ]
hiijk
Each active PE computes table location
S hi;jx and sends the computed coordinate
t pair to corresponding PE.
a
g VP set V3
e
3
Figure 11. The Preprocessing Phase of a parallel algorithm that constructs the table to be used in the
Recognition Phase. The table will have one processor per table model/basis/point combination.

quantized, is then sent to the appropriate processor in the set V3. No collisions can occur during this
step.

The above process is repeated for each of the models in the database. When all of the models have
been processed the created hash-function table is stored.
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5.3 Recognition Phase

Figure 12 shows a schematic diagram of the recognition algorithm. Two sets of virtual processors
participate in this phase, namely Vj, the feature coordinate set, and V5 the hash-function table set. We
again assume that a set of S (.S is typically 200) interest points have been extracted from the scene and
their coordinates reside in the local memory of the first S processors of virtual processor set V;. The
table is preloaded into the local memory of V5. In what follows, and for clarity purposes, we assume
that § = n? and that M,n are both powers of 2.

[Interest Points (= 200)

s
t Data

g VP set V;
. 7 | I T 1>

Q

' o
° ) 1,41 22,2 Tk, Yk
Load the two PE’s where (z,y) = (i, i)
1 F]li) tzrczla(li)cagts B B B or (z',y') = (zi,yi) w/ special sentinel.
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B = {(x)y)’(x :y)}
g [ [eeoo T T 1
us,vs

Each PE in turn broadcasts its local

s

t coordinate pair to the entire table.

a Each table PE compares its local entry

g against the broadcasted coordinate pair

e incrementing a local counter according
to the outcome.

2

ST .

t Compute the votes each model/basis
combination receives.

a

g Determine the winning combination.

e

3L

Figure 12. The Recognition Phase of a parallel algorithm that implements geometric hashing.

We operate sequentially through the basis sets and the scene points. First, the front end selects
a basis pair and broadcasts the coordinates of the points in the basis to the first S processors of Vj.
The two processors whose interest points form the selected basis do not participate in the coordinate
computation; the remaining S — 2 processors then use the broadcasted basis to compute the relative
coordinates of the locally stored scene point in the coordinate frame of the basis. These operations
involve minimal data movement and thus are extremely fast.
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In the second stage, the data from the .5 — 2 processors in V; are successively broadcasted to all
the processors of the set V,. Each broadcasted coordinate has the form (u,v), and gives a location in
the hash table where a vote should be tallied. Each processor in V5, indexed by (m, 1, j, k), where (%, 5)
gives a basis pair, contains a hash location (coordinate pair) which the processor can compare against
(u,v). If the two locations are sufficiently close together, then the table location (m, 1, j, k) records a hit
indicating a vote for model m and basis (7,5). This vote originates from the particular point (among
the S — 2) whose coordinates in the frame of the selected basis are being broadcasted. The tallying of
votes continues by accumulating hits in each hash-function table location; each of the S — 2 broadcasts
generates either one or no hits at any table location.

When the tallying is completed, a third stage is invoked; using a parallel prefix sum operation we
add the votes over k among locations (m,,j,k). The result is the total number of votes that the model
m and the basis (¢,5) obtains for the given scene and basis selection. Finally, a global-max among
the processors associated with the locations holding the sum of votes is used to determine the winning
model/basis combination. A final verification step may be added to determine the quality of the match.

Strictly speaking, each of the S — 2 broadcasts will require O(log(Mn?)) time, since there are M n>
processors in the V5 data set. However, the theoretical complexity can be decreased, at the expense of
requiring S storage locations in each processor, and assuming that S <= Mn>. As a matter of fact,
and assuming for simplicity that S = n?, all § — 2 broadcasts can be done simultaneously, by having
each processor in V; send its data to a unique processor in a two-dimensional (n X n) slice of the four-
dimensional data set V5. This routing can be completed in time O(log(n?)). This slice of data can then
be spread to the rest of V5, in parallel slices, requiring no more than O(log Mn) time. Observe that at
this point the entire set of the computed coordinate pairs is distributed among the n? processors of a
slice, one coordinate pair per processor. Two of the processors of each slice are empty. The processors
within a slice can now exchange their data in such a way that the entire list of computed coordinate
pairs becomes available to every single one of them. This can be simply achieved by a recursive doubling
procedure which communicates data between pairs of processors, and forms lists of coordinate pairs.
It must be noted though that the entries of those lists will not necessarily appear in the same order in
each processor. This recursive doubling procedure can be completed in O(S) time.

Let us now consider the time complexity of the recognition phase — the only phase that is performed
on-line. It is assumed that Mn2 processors are available?. M is the number of models in the database.
Each model consists of n points. S is the number of point features in the input scene.

It is clear that the time complexity of the recognition phase is dominated by the third stage. Indeed,
the time complexity of the first stage is O(log ). The second stage consists of a number of parallel
prefix operations and the stage’s time complexity is no worse than O(log(Mn) + log(n?)). The time
complexity of the last stage, as was already described, is O(S + logn + log(Mn)). This is also the
complexity of recognition phase.

6 Implementation Details

In this section we present in detail the actual implementations of the two algorithms already described.
Both algorithms are implemented on a 8K-processor Connection Machine using synthetically generated
databases.

2 Actually, no more than Mn(n — 1)(n — 2) processors are needed
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6.1 Data Parallelism over the Hash Table Bin Entries

The algorithm suggested in Section 4 assumes the availability of a total of Mn3 processors. For the
databases that we intend to use, e.g. 1024 models each having 16 points, this translates to at least 2%2
processors, i.e. many more processors that those currently provided by the available SIMD architectures.
One could use the virtual processor facility provided by the software interface to accommodate the
processor set V3; however, the involved overhead would be prohibitive. As a matter of fact, the virtual
processor ratio for set V3 would equal 512 on the 8K-processor Connection Machine.

In order to implement the algorithm, all the (model,?,j) entries that hash into the same bin are
stored contiguously in a single physical processor memory rather than associated with distinct physical
processors. More specifically, each hash table bin is mapped onto a physical processor; this processor
maintains locally a list of all the (model,t,j) entries hashing into the corresponding hash table bin.
Clearly, for a given database, some of the local lists could be empty. The collisions that are likely to
occur during the preprocessing phase, when more than one processors of set V3 attempts to deposit the
tuple (model,i,j) at the same hash table bin (processor of V3) are resolved using a simple algorithm
based on “locks.”

During recognition, the processors corresponding to hash table bins that received one or more votes,
scan their local lists and cast a vote for each entry (model,i,j) encountered. The time needed for the
list traversal is clearly dominated by the longest such list. As we have already indicated, the current
implementation uses method (2) of Section 3.2 in order to histogram the entries of those hash table bins
that receive a message. This histogramming process currently accounts for 99% of the execution time
of the recognition phase. Clearly, efficiencies in histogramming will very much improve the performance
of the implementation. In particular, the use of our radix sort based method of Section 3.2 is expected
to reduce processing times, at least for our instances of 18-bit words, and typical sequences of 256K
items to be histogrammed. Further improvements in efficiency can be achieved by requantization of
the hash space, and use of symmetries.

For a given database of models, the typical hash bin occupancies for uniformly quantized hash bins
are non-uniform (Figure 13). Requantization of the hash space leads to hash-bin frequency equalization,
thus reducing execution time, and is equivalent to using an appropriate remapping function. For
example, in the case where the model points are distributed according to a Gaussian distribution of
mean zero and standard deviation o, the remapping functions are:

u2j:112
Rigid Transformations: h(u,v)= (1 — € 3% | atanZ(’v,u)) , and (1)
c e . . 3
Similarity Transformations: h(u,v) = ( 1- PR IT atan2(v,u) ) . (2)

where atan2(v, ) is the function giving an angular radian measure of the vector formed by (u,v) from
the positive horizontal axis. Figure 13 shows the result of applying such a remapping function in the
case where the models can undergo similarity transformations.

Recalling from the discussion of Section 2 that the coordinate frame’s origin is located at the
midpoint between the two points defining the basis, it is easy to see that certain symmetries arise in
the storage pattern of entries in the hash table. If e; and e; form a basis pair of model I, and the
coordinates of point p in model [ are (u,v), then there will an entry of the form (I, (e;,e;)) at location
(u,v) in the hash table (or at the rehashed position corresponding to (u,v)). When the basis pair (ey,



6 IMPLEMENTATION DETAILS 19

Figure 13. Hash table equalization for similarity transformations. Points are Gaussian distributed over R2.

e) is used, the coordinates of p will be (—u,—v). Thus in the location (—u,—v) there will be an entry
of the form (I, (ez,e1)). Due to the symmetry of the rehashing functions, the location of this entry, even
when rehashing is used, will be symmetrically related to the entry of the form (/,(eq,ez)) caused by p
when (eq, e;) is used as a basis. The result is that for every entry in the hash table (before remapping)
above the v = 0 axis, there is an equivalent entry in the bottom half plane below the v = 0 axis, with
the only change that the basis pair has been reversed. Thus, there is no need to store the bottom half
of the hash table! Instead, whenever a hash occurs during the recognition phase to the lower half
plane, the entries can be generated from the entries in the upper half plane. Since the entries of any
given hash bin can now be spread over two bins (processors), the corresponding lists of entries will be
half as long.

A final possibility is to perform a folding of the hash space. For example, when a hash occurs to
the lower half-plane, rather than generating the entries from the list of entries in the symmetrically
opposite position of the upper half-plane, we can instead register a vote for the entire bin in the upper
half-plane. This will confuse entries of the form (I,(eq,e2)) with entries of the form (I, (e, e;)) — thus
our basis pairs are now basis sets, and (e, e) is the same as (ez, e;). Although this means that a
particular (model,basis) may receive more votes than it deserves, in practice we have encountered no
difficulties with this method.

6.2 Data Parallelism over the Model /Basis/Point Combinations

The algorithm suggested in Section 5 assumes the availability of a total of Mn® processors. As we
already mentioned, for the databases that we intend to use this translates to a number of processors
much higher than provided by currently available SIMD machines. Use of the virtual processor facility
provided by the software interface, in order to accommodate the employed table is again dismissed due
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to the extremely high involved overhead.

In order to implement our algorithm, we have chosen to store the entries of the processors in charge
of table locations (1,%,j,k);_, contiguously in the memory of the processor corresponding to location
(l,2,7,1). This in effect collapses the 4th dimension of the table while at the same time reducing the
virtual processor ratio of the corresponding processor set: the new virtual processor ratio is 32 on the
8K-processor Connection Machine. Observe that during the construction of the table, n — 2 processors
attempt to deposit a distinct tuple (coordinate pair) at the same bin. Use of “locks” provides the
necessary serialization.

During recognition, the .S processors of V; rank themselves using either the index of the locally
available scene feature or their own address: either approach to performing the ranking involves no
data movement and is therefore extremely fast. After having computed the relative coordinates of the
local feature in the frame determined by the broadcasted basis, each of the .S processors in turn spread
their computed coordinates to all of the processors of the table using a parallel prefix computation. After
a coordinate tuple is received, each of the table processors, scans its entire local list of coordinate pairs:
if the broadcasted tuple matches an entry of the local list, the processor increments the value of a local
counter. After all S processors have taken their turn, the values of the local counters contain precisely
the number of votes the corresponding (model, i, j,) combination has received for the broadcasted basis.
A global-max operation on the values of those counters recovers the winning combination.

Observe that in the current implementation a total of S(n — 2) comparisons are performed by each
table processor. This is highly inefficient since S 4+ (n — 2) comparisons suffice. In fact, the lists of
coordinate pairs maintained by each table processor can be sorted during the preprocessing phase. The
processors of the set V; can rank themselves using the relative coordinates they have computed and use
that ranking to determine their turn in spreading the local coordinate pair. When all of the computed
coordinate pairs have been communicated to the table processors, each such processor proceeds to
determine how many times the entries of its local list occur in the set of computed coordinate tuples:
using indirect addressing, only S+ (n—2) comparisons are needed. In this alternative the ranking of the
S processors of V7 does involve data movement, hence it is more costly than before. However, we believe
that the savings incurred by the decreased number of comparisons will more than counterbalance the
cost of ranking.

Finally, observe that the entries of the hash-function table locations (,%,7,k) and (I, 7,%,k) differ
only in their signs. We can thus dispose of half of the table! In terms of the actual implementation
described above, this results in a reduction of the virtual processor ratio of the corresponding processor
set by 2, and thus in an analogous speedup. Of course, it introduces the need for additional bookkeeping
but since the required operations involve no data movement this bookkeeping can be performed without
any appreciable overhead.

7 Performance Results

The model databases that we use for our experiments contain 1024 models. Each of the models consists
of 16 points that are generated randomly. These random points are distributed either uniformly over the
unit disc, or according to a Gaussian distribution of mean zero and standard deviation 1. The database
models are allowed to undergo either a similarity or a rigid transformation. All of the experiments are
carried on an 8K-processor Connection Machine system. Figure 14 shows some typical models (dot
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patterns).
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Figure 14. Typical models.

All four combinations were studied:
(1) Rigid Transformations and Gaussian distributed model points;
(2) Similarity Transformations and Gaussian distributed model points;
(3) Rigid Transformation and uniform distribution of the model points over the unit disc; and,
(4) Similarity Transformation and uniform distribution of the model points over the unit disc.

The re-quantization of hash space variants for (1), (2), and (3) above were also studied.

The scenes we use in our experiments are also generated synthetically. In order to create a scene, one
of the models is selected from the database; after an arbitrary rotation and translation (and possibly
scaling), the model is embedded in a scene of randomly generated points. The total number of points
in the final scene is approximately 200; 16 of these points belong to the model. Figures 15 and 16
show typical scenes. Noise is added to the positions of the points (through round-off error). In both
implementations, the front end randomly selects a pair of scene points (probe) as the basis to be used
during the recognition phase.

For the first implementation, the computation proceeds as outlined in Section 6. For cases (1)
through (4) above, the time needed for a single probe during the recognition phase is approximately 3.4
seconds; approximately 7 milliseconds are spent on the computational part of the algorithm and the
remainder of the time is devoted to the histogramming process. When we make use of the rehashing
functions and of the appropriate uniform hash table, the probe time reduces to 1.2 seconds with 8K
processors. It must be stressed here that none of the experiments made use of the hash table symmetries;
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exploitation of those symmetries will speed up the recognition by a factor of 2, bringing the time required
for a single probe down to 0.60 seconds on an 8K-processor Connection Machine. This is because only
half of the hash table must be stored in the Connection Machine, and thus the length of the lists of
entries maintained by each processor will be halved. Use of the folding (thereby using basis sets instead
of basis pairs) will incur even greater computational savings.

IO TECZANITICON £ SRS SR FIEY S S B S LA
HIDDEN OBJECT Objects in Databass: 1024 SCENE - e .. RECOVERED OBJECT Elapsed (M Time: 3,4 seconds

P # (M Pracessors; 8192
. . L . I . B Rehashing Disabled

Figure 15. A Recognition Example.

On a 64K machine, the entries of a hash bin can be shared among 8 processors resulting in an
8-fold speedup. Furthermore, additional speedup is introduced by the fact that the virtual proces-
sor ratio of the histogram bin set (set V4) is now 4 (as opposed to 32 with 8K processors): the
send-with-additive-write operations will now be much faster. Extrapolations indicate that a 64K ma-
chine, using the symmetries and rehashings, but without taking advantage of the foldings, would process
the entire computation, including the histogramming, in approximately 70 milliseconds. Additional
speedup can be obtained by making use of the folding of the hash table, thereby voting for basis sets
as opposed to basis pairs, or by doing partial histogramming.

We have also experimented with the following modification to the (model, basis) items. For databas-
es of 1024 models, the model numbers require 10 bits of information; grouping models into 32 classes,
a class of models may be specified with only 5 high-order bits of the model number. Instead of voting
for the (model,basis) pair (18-bit data items), we vote for the (model — class,basis) combination,
which requires 5 fewer bits. Although this potentially confounds 32 models into a single model, in our
experiments, very few items received additional votes, and thus the resulting vote tallies were changed
very little. From the (model — class,basis) receiving the most votes, it is very easy to determine the
corresponding best model. This modification resulted in probe times times of 0.7 seconds for the recog-
nition phase on an 8K machine (compared to the previous 1.2 second result). On a larger machine,
improvements will be similar.
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Figure 16. A Recognition Example.

Such model-binning is equivalent to performing an iterated histogramming of the model and basis
pairs. At an opposite extreme, the radix sorting method of histogramming should prove to be more
efficient than the implementations described here for the range of sizes of the database used in our
experiments.

In the second implementation, the computation proceeds as outlined in Section 6. We tested the
implementation with a large number of scenes. For cases (1) through (4) above, the implementation
processes the scenes at a rate of 5.0 milliseconds per scene point, i.e. for a given probe the implementa-
tion requires approximately 1.0 second for a two hundred point scene, on an 8K-processor machine. We
expect that with the incorporation of indirect addressing the resulting implementation will outperform
that of the first algorithm.

On a 64K-processor machine, the tabular structure will be spread over more processors, thus de-
creasing the virtual processor ratio of the hash table set by a factor of 8 (i.e. from 32 down to 4), and
resulting in similar speedups.

In Figures 15 and 16 we present two recognition examples; both points of the basis belong to the
model embedded in the scene.
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