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Abstract— Reasoning with uncertainty is a field with
many different approaches and viewpoints, with important
applications to sensor design and autonomous system develop-
ment. We attempt to unify some of the different approaches by
introducing a common philosophical framework under which
different calculi may be developed. Each calculus reflects dif-
ferent design choices compatible with the philosophical tenets.
The tenets postulate that uncertainty in representations can be
viewed as a degree of dispersion of opinions, and that the space
of opinions operates as a separate sample space distinct from
the underlying sample space on which probabilities are nor-
mally defined. Different calculi result when choices are made
for the representation of the opinions, the method for combin-
ing opinions, the method for juxtaposing multiple sets of opin-
fons, and the way of measuring the spread in the opinions.

LINTRODUCTION

Many sensor fusion systems make use of an evidential
reasoning system, where evidence is combined with current
measurements in order to maintain states of belief and
confidence in a set of hypotheses. These systems are all
motivated by the fact that the sensor is supposed to provide

more than simple measurements, but also confidence levels.

in the measurements, and ultimately confidence levels in
propositions and hypotheses developed from those measure-
ments. The fundamental concepts always involve quantitics
related to the degree of validity of a proposition, such as a
probability, and other quantities related to the degree of cer-
tainty in the assertion of the degree of belief. Various cal-
culi are used for representing these concepts and performing
the calculations, including Bayesian networks, fuzzy logic,
Kalman filtering, and the Dempster/Shafer theory of evi-
dence. Each calculus has certain theoretical underpinnings,
although a universally accepted methodology is still lacking.

There are really two problems that must be addressed
when designing an evidential reasoning theory. First, the
philosophical issues of belief, certainty, and confidence must
be modeled in a rational manner. Second, the methodology
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for maintaining and combining states must be determined in
a manner that conforms as nearly as possible to the philoso-
phy. One reason for the profusion of different calculi is that
both issues present serious difficulties. The philosophical
issues present difficulties because different meanings can be
ascribed to beliefs and certainties. Although probabilities
are likely to be used to develop the calculus, the probabilities
must apply to events that are well-defined, and the events
will typically involve subjective evaluations that make the
theory subject to varying interpretations. The methodologi-
cal issues are difficult because no matter what scheme is
chosen to implement the philosophical foundations, certain
approximations will be necessary. Always, the methodology
will fall short of the desired goals.

To make the philosophical questions more concrete,
consider the difficulty of defining the statement that “*There
is a 20% probability that this there is a tank in this image.”’
The frequency interpretation of such a sentence means that
among 100 images that are more or less precisely the same,
roughly 20 will actually contain the image of a tank. The
difficulty with this interpretation is that it presupposes the
existence of a sufficient number of cases with identical con-
ditions — whereas the statement may be uttered by a
knowledgeable photo-interpreter who has never seen pre-
cisely such an image before; indeed, there may have never
been such an image before! Another interpretation might be
termed the “‘subjective’” probability theory, and is founded
on work by DeFinetti, Good, Savage, Kyburg, Fisher, and
others [1,2,3]. In the ‘‘subjective interpretation,” the state-
ment can be interpreted to mean something along the lines of
“I would accept 1 to 4 odds that there is a tank in the
image.”” (We hope that the person is betting with money,
and not with their life!) However, such an interpretation can
lead to different measurement methods. For example, if one
insists that the bettor should come out even in the average
over many bets on the same situation, then the subjective
interpretation should yield the same value as computed in
the frequency interpretation. On the other hand, one could
take a particular situation and devise experiments to find a
psychometric function under varying conditions, to find the
odds under which a majority of experts would be indifferent
when placing “‘bets.”” This value need not equal a precise
frequency even if the frequency can reasonably be measured
statistically.




Difficulties also arise in using probabilities, no matter
how they are developed, for inferencing., Bayesian analysis
and non-Bayesian approaches both have advocates and their
specific rationale, but invariably invoke philosophical
debates concerning their applicability. We begin with a
specific set of philosophical tenets, founded on the notion
that the sensor systems yield measurements with variances
that can be determined on physical or empirical grounds.

IL TENETS

The tenets are:

(1) That uncertainty can be represented by a distribution
of opinions, whereas certainty is represented by unan-
imity of multiple opinions.

(2) By an “‘opinion,” we mean an estimate of a quantity
that is functionally related to a (frequency-based) pro-
bability, or is a subjective estimate of a conditional
probability, or is an estimate of a well-defined quantity
representing the likelihood of a given proposition
based upon given evidence.

(3) When opinions are combined in order to make esti-
mates that are conditioned on combinations of evi-
dence, a precise and well-defined combination formula
should be used. In the case that the opinions are esti-
mates of probabilities, Bayes® rule should be used 1o
combine pairs of opinions (o yield a new opinion.

The propositions can relate to measurement values obtained
{rom different sensors, or can be propositions that are
developed and based upon those measurements (such as the
presence or absence of a target class).

We present a variety of different calculi that are
obtainable from these philosophical foundations, depending
upon the values that the opinions are supposed to represent,
and depending upon the assumptions used in the updating
process. Our intent is to show the utility of the multiple-
opinions approach to uncertainty. We do not purport to
obviate other philosophical approaches to uncertainty, and
we do not support a particular uncertainty calculi over all
others. In particular, we do not give a thorough survey of
existing calculi nor their relation to the calculi that are
derived as a result of the multiple-opinions framework.
However, we do show how these philosophical tenets are
reflected in the Dempster/Shafer calculus, and to the calculi
of the systems approach to combining uncertain estimates,
generally known as Kalman filtering. More importantly, the
approach leads to a way of categorizing uncertainty calculi,
and a way for choosing a calculus that is most appropriate
for a specific application.

Certain aspects of each calculus is invariant. They all
will represent a state of belief by statistical measures on the
distribution of opinions, and they will also use a method to
combine opinions based on a rational Bayesian formulation.
Combinations of opinions yield a new sct of opinions; a

meaningful measure of certainty in any single measurement
or proposition necessarily entails multiple opinions.

II. DESIGN CHOICES

Each calculus contains four main design choices:

Representation of opinions:
The opinions may represent individual measurements
of some sensor (single value or multidimensional
value), or might be a probability of some proposition.
The representational issue includes the measurement
units: for example, for the case of probabilistic meas-
urements of propositions, logarithmic probabilities
often are more convenient units.

Statistics maintained:
The most common statistics are simply the mean and
covariance of the opinions. However, in the
Dempster/Shafer calculus, all statistics of the opinions
are maintained. Intermediate systems might provide
more specificity concerning the degree of certainty in
the opinions.

Combining of sets:
We assume that the combination of belief states, as
obtained from individual sensors or different groups of
sensors, takes place by combining the the statistics of
the multiple opinion sets. One way to combine the
sets of opinions is to take the union of all constituent
opinions. However, unions do not permit a multiplier
effect that can arise due to independent confirmation;
in order to permit a more precise analysis, it is neces-
sary for pairs of opinions to be combined through a
Bayesian or analytical process. The issue of the com-
bination of the sets concerns the pattern in which pairs
of opinions are brought together. The main choices,
other than union, involve pairing off opinions, under
the assumption that each set of opinions always has »
clements, or taking a set product, to form the set of all
pairs of opinions with one component from each set.

Combining of opinions:
Once pairs of opinions are brought together, a new
opinion must be generated. This can be done by
averaging the opinions, finding an intersection, Bayes’
formula assuming independence, a Bayesian combina-
tion assuming some other parameterized form of
independence, or a weighted average.

Each design choice leads to a different calculus, giv-
ing a Chinese menu of uncertainty calculi. Different appli-
cations will require different design choices. We illustrate a
number of different calculi that arise for several specific
applications. In this short paper, we mention three such cal-




culi, but omit descriptions of the corresponding applications.
1V. DEMPSTER/SHAFER

The Dempster/Shafer theory of calculus [4], with it’s
“‘Dempster rule of combination,”” represents the following
design choices. The opinions necessarily relate to a proposi-
tion for which there are multiple possible labels (the frame
of discernment). Each opinion is simply a list (i.e., a subset)
of the labels that are considered possible. This is often
misunderstood, since the values in the Dempster/Shafer cal-
culus resemble probabilities. In reality, the opinions
represent lists of possibilities, and preclude the expression of
the degree of probability in the individual labels. The statis-
tics are the full set of joint statistics, represented as the per-
centage of opinions in the set of opinions designating a given
subset as the exact list of possible labels. The collection of
all of these percentages form the “‘mass function,” which
gives the state of belief over the frame of discernment. Sets
of opinions are combined by taking the product space of
opinions. Each pair of opinions forms a new opinion by
intersecting their lists, except that if the intersection is
empty, then the new opinion is discarded, and the pair is
removed from the product set of experts.

Much has been written in attempting to provide alter-
nate interpretations of the combination formulas, however,
whatever interpretation one adopts, the design choices indi-
cated above and the interpretation that it provides must give
an isomorphic understanding of the workings of the system,
The particular interpretation given here happens to be the
one defined by Dempster in his original introduction of the
calculus [5,6].

We now specify the interpretation in mathematical
notation. More details may be found in an earlier paper [7].
The same notation will be used for the alternative calculi.

Let A be the frame of discernment, which is a finite
collection of mutually exclusive and exhaustive propositions.
That is, for a given situation, exactly one label from the set
A s true. The set of opinions will be indexed over E, the set
of experts. An individual expert in E is denoted by ®. Thus
an expert we E has an opinion on the current situation. The
expert might give a probability distribution over A, but
instead gives a set of possible labels. That is, for each label
in Ae A, the expert ® gives a boolean opinion, (either O or
1), saying whether that label is possible or not in the given
circumstances. We denote this (boolean) opinion by Xo(A).
That is, x,(A) is equal to 1 if and only if expert ® in E
believes that label A in A is possible. For labels that the
expert rules out, the corresponding value of x,(A) will be
zero. We will assume that every expert names at least one
label as being possible.

Given a collection of values {x,(A)} indexed over ®
in £ and A in A, the state of the system (i.e., the belief state)
is defined by the statistics over £ of the opinions. The com-
plete set of joint statistics may be represented by:

CA)= ProLb(xm(l) =1 forall AeA),
wel

where A ranges over all possible subsets of A. These are the
full set of joint probabilities. They also happen to equal the
commonality numbers as defined by Shafer [4], and they
are equivalent to the full set of belief values. That is, from
the commonality values one can derive the full set of belief
values, and vice-versa. Accordingly, the belief state is
represented by the full collection of statistics over the set of
experts of the boolean opinions given by those experts. The
set of masses are also equivalent to these collections; the
mass on a subset A can be defined as the probability that an
expert names precisely A as the subset of possibilities (i.e.,
that the labels in A are possible and the labels outside of A
are ruled out).

Finally, suppose we wish to combine two belief states.
One belief state is represented by the statistics of a collection
of opinions {x4 (A)} for ®; in E; and A in A, and the other
belief state is represented by the statistics of a collection of
opinions {x,,(A)} indexed over w, in E,, and A in A. Given
two opinions of x,, and x,, we define the combined opin-
ion as the pointwise product:

X (o) (M) = X, (7V)JC(;L)2 ).

That is, according to the committee consisting of experts ©;
and @y, a label is still possible only if both commitiee
members agree that the label is possible. We then take the
set of all combined opinions, where one opinion comes from
the collection E; and the other opinion comes from the col-

lection E,. We rule out any combined opinions where the

committee rejects all labels. The resulting set of opinions is
indexed over a set £, which is a subset of the product set of
E{XE4, and can be used to collect statistics over E. The full
collection of statistics is used to determine the commonality
numbers, which in turn are equivalent to beliefs, which in
turn are equivalent to masses. If we suppose that the result-
ing masses are given by m (A) for A ranging over the subsets
of A, and that the original masses of the two collections are
given by the functions m,(A) and m,(A), then we discover
that:

mA)=2 T m@ymC)
B\C=A
where
Z=1- 3 m@my©)
BNC =0

This is precisely the Dempster rule of combination,

We thus see that the Dempster rule of combination is
completely compatible with the philosophical tenets defined
in Section II, under the design choices of boolean opinions,
complete tracking of all statistics, and product rule combina-
tion (throwing out opinions when there are no possibilities).

V. LOG PROBABILITIES




Next, suppose that the opinions are represented by the
logarithms of probabilities for a particular proposition. We
again envision a collection of “‘experts’® E, with cach expert
© in E expressing an opinion x,(A) for every label AcA.
The values, however, are not simply the logarithms of
estimated conditional probabilities based on the known
observations, but rather the log of the ratio of the conditional
probability and the prior probability. Specifically, we set

_ Prob(A | Information)
*o() Prob()

where the “‘Information’’ is the information shared by the
experts in E, and the denominator is the prior probability of
label A in the absence of any information. Note that these
probabilities are defined over the usual sample space of
problem instances, and not the set of experts (as was the case
with the probabilities used in the previous section). These
values are the representation suggested by Charniak [8] for
probabilistic reasoning. Each expert will have a different
estimate of this log-ratio, and the statistics that we propose to
maintain are the mean and variance of these values. Thus if
an expert regards a proposition as being four times as likely
due to the given measurements as opposed to its probability
in the absence of information, then the expert contributes
log(4) as the opinion in the set of opinions, from which we
measure the mean and variance. Note that if the information
has no influence on the prior probability, according to an
expert, then the expert’s opinion will be log(1), i.e., zero.

The state of the system is then represented by two vec-
tors:

) = AvE(ea OO,
and
00 = [Avg(ca(h) - noay] "

Unlike the Dempster/Shafer representation, which requires
2V values for the specification of the state, this formulation
requires only 2N values, where N is the number of possible
labels (i.e., N = #A).

Now, if two such sets of opinions are to be combined,
we chose to take the set product of the opinions. If a compo-
site opinion is to be formed from two individual opinions,
and if we may suppose a conditional independence between
the information sources on which the two experts are basing
their opinions, then it can be shown that modulo a uniform
additive constant, the two opinions may be summed. This
comes from Bayes formula, using conditional independence
of the information sources, yielding:

Prob(A| Info;, Info,)  Prob(h| Info,) _Prob(x| Info,)
Prob(}) Prob(\) Prob(\)

The two sides are equal, except for a proportionality con-
stant, which is independent of A. Taking the log of both
sides, we see that it is logical to set

x(a)l,mz)(}\) =X@, )+ xszV)-

The proportionality constant has been dropped, which means
that the opinions can be off by a constant additive amount
(but the same constant for all the labels A). This skewing, it
turns out, is unimportant, since we are only concerned in the
relative size of the components over different labels A. This
then is the updating method, and we can see that indepen-
dence (conditioned on every label) is required for the infor-
mation, A mathematical statement of the independence
assumptions says that

Prob(Info, | Info,, A) = Prob(Info, | &)

for all A in A. These are strong requirements, but potentially
valid in some circumstances. See Charniak [8] for a further
discussion of the applicability, and see a previous paper [9]
of ours for an alternative way of weakening the conditional
independence requirements.

Using the product formulation for obtaining the the
combination set of opinions, we find that the following for-
mulas hold. The mean and standard deviation of the opin-
ions of the experts in set E; are denoted by (l4;,0), and the
opinions of the experts in set E, give rise to the state
(Ll.2,0'2). Then

BV = 1 (A) + (M),
172
o(\) = [0%(7») + 0'%(7\,)] .

That is, the resulting calculus can be specified by the state-
ment that mean log-probability opinions should be added,
and variances also add. We look for a situation where the
resulting mean opinion is either very large positive, or very
large negative, with a relatively tight variance (much less
than the magnitude of the opinion) in order to conclude that
the corresponding proposition is true or false.

KALMAN FILTERING

Finally, suppose that the opinions represent vectors of
measurements, obtained from sensors. Based on a set of
measurements, for instance, we may have a set of opinions
that cluster at a particular vector v;, with covariance Cj.
Another set of opinions, perhaps based on a different tech-
nology, yield a mean and covariance of v, and C,. We
assume there are an equal number of samples in each set
leading to the measurement of the mean and covariance. We
regard the mean as a single random variable whose realiza-
tion is, respectively, v; and v,. The expected error in each
realization is related to the observed covariance matrices, €4
and C,. The combination method pairs the collection of
opinions as a single entity with the second collection of
opinions as a single entity, and the combination of those
opinions is based on an analysis of the density function for
the true value being measured, conditioned on the fact that
two realizations of the two separate Gaussian random vec-
tors gave particular values. The resulting density function is




Gaussian, under the assumption that the prior distribution for
the measured value is Gaussian. The mean is given by a
weighted sum of v; and v,, where the weights are inversely
proportional to the covariance matrices. Specifically, the
new mean is given by

CCTlvi+CC5lv,
where C™'=C7!1+C3!. The covariance of the distribution is
given by C. These are precisely the formulas that arise when
using the Kalman filtering approach to combining indepen-

dent measurements, expressed as a combination formula
rather than a sequential filter.

Let us suppose that the covariance matrices are always
diagonal. This occurs if and only if the values of the x 4 (A)’s
are independent with respect to A. In this case, we may view
the Kalman filtering formulas (which are really for the sim-
plest case of filtering, where the state transition formula is
static) in even closer correspondence to our philosophical
tenets.

We now assume that the experts are numbered 1
through . Bach expert has an opinion x,(A) for each label
L. We use the pairwise combination method for mixing
experts, so that two experts meet only if they have the same
number. Thus we have two sets of experts, £y and E,,
where each expert in both sets has a number between 1 and
n. Two experts w;€ E sub 1§ and $ww sub 2 eE, meet
only if they have the same number, Num (©;) = Num(®,).
We thus have n pairs in the pairwise combining,

The updating formula works as follows. Suppose the
pair x,, (A) and Xg, (M) are to be combined. Our experts
decide that an average should be taken in order to get the
final value. However, they decide to weight the average
unequally, using as weighting coefficients the inverses of the
variances of the corresponding labels within the respective
entire set of experts. That is, the average is:

x((ol,mz)(k) = A Xy M)+ b'xmz(l),

where a+b =1, and a is proportional to (o; (V)2 and b is
proportional to (6,(A))™2. Here,

172
6/ = [ Ave(ra()-2OW]
we
is the standard deviation of the A’th component within the
set of opinions indexed over E;. This is reasonable, since the
degree of certainty that an expert ;€ E; has in his own opin-
ion is inversely related to the variance of that opinion among
his colleagues. Accordingly, a combined opinion is obtained

for every pair of experts that meet.

We maintain the mean opinion for each label, and the
standard deviation of each opinion, as in the previous sec-
tion. That is, the states are represented by (u;(A),0;(\)) for
i=12. Tt is easy to see that the resulting mean opinion of
the collection of experts (n of them) obtained by pairing off
the experts in £ and E, is just

M) = an -ty M) + by ua (M),

where a;, and b,, are respectively proportional to the inverse
of the variances of the labels A. That is, aa, is proportional
to (51(\)2 and bby, is proportional to (5,(A))2. We thus
obtain the formulas:

)
T T
63*(\)
by,

oM+ o)’
which are the same as the Kalman updating formulas. Com-

puting the standard deviation of the n resulting opinions
yields

(V) =o672(W) + 63° (V)
as desired.

Thus for the case of independent labels, the mean and
standard deviations of the opinions, with pairwise combin-
ing, correspond to the static Kalman filtering equations, in
the case where opinions are combined by weighted averag-
ing, with the weights proportional to the inverse of the vari-
ance of the corresponding label among the opinions within
the set of experts.
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